This report describes a facile strategy to enhance the catalytic selectivity by tuning the pore sizes of metal-organic frameworks (MOFs) in nanoparticles (NPs)/MOF composite catalysts. A general post-synthetic modification method was used to adjust the pore sizes of MOFs by using anhydrides with different chain lengths to react with amino groups in the ligands. The modified NPs/MOF catalysts exhibited enhanced size selectivity performance in the hydrogenation of olefins, which revealed the flexibility of MOFs as supporting materials for heterogeneous catalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cc06061h | DOI Listing |
Int J Biol Macromol
January 2025
Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China. Electronic address:
As one of the most commonly used chemotherapeutic agents in clinical practice, cisplatin is unable to selectively accumulate in tumor tissue due to its lack of targeting ability, leading to increased systemic toxicities. Additionally, the effectiveness of monotherapy is greatly limited. Therefore, the development of new cisplatin-based drug delivery systems is essential to improve the effectiveness of tumor treatment.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China. Electronic address:
Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. Electronic address:
Covalent organic frameworks (COFs) have drawn great interest in electrochemical sensing. However, most are integrated as enrichment units or reaction carriers and are co-modified with metal nanomaterials. Few studies use the single pristine COFs as an electrochemical signal amplifier.
View Article and Find Full Text PDFTalanta
January 2025
Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China. Electronic address:
E-selectin (CD62E) is an adhesion molecule expressed on the surface of endothelial cells (ECs) and its level increases significantly upon the stimulation of ECs by inflammatory factors. Quantitative analysis of CD62E is of great importance to early diagnosis and treatment of vascular diseases and hypertension. A new method for the determination of CD62E was developed using a portable pH meter in this work.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Institute of Bioproducts and Paper Technology, Graz University of Technologyy, Inffeldgasse 23, 8010 Graz, Austria.
The mechanical properties of metal-organic frameworks (MOFs) are of high fundamental and practical relevance. A particularly intriguing technique for determining anisotropic elastic tensors is Brillouin scattering, which so far has rarely been used for highly complex materials like MOFs. In the present contribution, we apply this technique to study a newly synthesized MOF-type material, referred to as GUT2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!