The increase in carbapenemase-producing (CPE), including metallo-β-lactamase (MBL) producers, is a severe global health concern. Thus, highly sensitive and specific methods for detecting MBL producers are needed. In this study, we tested the detectability of MBL-producing against three types of MBL inhibitors (sodium mercaptoacetate, SMA; ethylenediaminetetraacetic acid, EDTA; and dipicolinic acid, DPA) used in combination with a modified carbapenem inactivation method (mCIM). These inhibitor-combination mCIMs were tested against 129 CPE (IMP, 93; NDM, 11; KPC, 13; NMC, 1; OXA-48, 11) and 75 non-CPE. For evaluation of MBL inhibitors, we used two concentrations for each of the three inhibitors: DPA (200 and 300 mg l ), EDTA (5 and 10 mM), and SMA (1500 and 3000 mg l ). The overall sensitivities of SMA, EDTA and DPA were 97.1-99.0 %, 81.7-99.0 % and 88.5-96.2 %, respectively. Moreover, each method showed high specificity (99.0-100 %). Although inhibitor-combination mCIMs were highly sensitive and specific for the detection of MBL producers, we found that sensitivity was dependent on the concentration of inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jmm.0.001073DOI Listing

Publication Analysis

Top Keywords

mbl inhibitors
12
mbl producers
12
mbl-producing three
8
highly sensitive
8
sensitive specific
8
inhibitor-combination mcims
8
mbl
6
inhibitors
5
evaluation inhibitor-combination
4
inhibitor-combination mcim
4

Similar Publications

Metallo-β-lactamases (MBLs) in and other Gram-negative organisms pose significant public health threats due to their association with multidrug resistance (MDR). Although aztreonam (AZT) can target MBL-producing organisms, its efficacy is compromised in organisms expressing additional β-lactamases that inactivate it. Combining AZT with the β-lactamase inhibitor avibactam (AVI) may restore its activity against MBL-producing isolates.

View Article and Find Full Text PDF

Previously, we reported that 3--alkyl difluoroquercetins (di-F-Q) potentiates the antimicrobial activity of aztreonam (ATM) against metallo-β-lactamase (MBL)-producing through simultaneous inhibition of MBLs and efflux pumps. However, the ATM-potentiating activity of the 3--alkyl di-F-Q was observed only at high and potentially toxic concentrations (32 mg/L). As both MBLs and efflux pumps reside in the periplasm of Gram-negative bacteria, their inhibitors should accumulate in the periplasmic space.

View Article and Find Full Text PDF

In-vitro activity of the novel β-lactam/β-lactamase inhibitor combinations and cefiderocol against carbapenem-resistant Pseudomonas spp. clinical isolates collected in Switzerland in 2022.

Eur J Clin Microbiol Infect Dis

December 2024

Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland.

To evaluate the in-vitro activity of the novel commercially-available drugs, including meropenem-vaborbactam (MEV), ceftazidime-avibactam (CZA), ceftolozane-tazobactam (C/T), imipenem-relebactam (IPR) as well as cefiderocol (FDC), against carbapenem-resistant Pseudomonas spp. (CRP) isolates. All CRP isolates collected at the Swiss National Reference Laboratory (NARA) over the year 2022 (n = 170) have been included.

View Article and Find Full Text PDF

Pseudokinase TRIB3 stabilizes SSRP1 via USP10-mediated deubiquitination to promote multiple myeloma progression.

Oncogene

December 2024

Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China.

Multiple myeloma (MM), the world's second most common hematologic malignancy, poses considerable clinical challenges due to its aggressive progression and resistance to therapy. Addressing these challenges requires a detailed understanding of the mechanisms driving MM initiation, progression, and therapeutic resistance. This study identifies the pseudokinase tribble homolog 3 (TRIB3) as a high-risk factor that promotes MM malignancy in vitro and in vivo.

View Article and Find Full Text PDF

While relative binding free energy (RBFE) calculations using alchemical methods are routinely carried out for many pharmaceutically relevant protein targets, challenges remain. For example, open-source tools do not support the easy setup and simulation of metalloproteins, particularly when ligands directly coordinate to the metal site. Here, we evaluate the performance of RBFE methods for KPC-2, a serine-β-lactamase (SBL), and two nonbonded metal parameter setups for VIM-2, a metallo-β-lactamase (MBL) with two active site zinc ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!