A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interpretation of Compound Activity Predictions from Complex Machine Learning Models Using Local Approximations and Shapley Values. | LitMetric

Interpretation of Compound Activity Predictions from Complex Machine Learning Models Using Local Approximations and Shapley Values.

J Med Chem

Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany.

Published: August 2020

In qualitative or quantitative studies of structure-activity relationships (SARs), machine learning (ML) models are trained to recognize structural patterns that differentiate between active and inactive compounds. Understanding model decisions is challenging but of critical importance to guide compound design. Moreover, the interpretation of ML results provides an additional level of model validation based on expert knowledge. A number of complex ML approaches, especially deep learning (DL) architectures, have distinctive black-box character. Herein, a locally interpretable explanatory method termed Shapley additive explanations (SHAP) is introduced for rationalizing activity predictions of any ML algorithm, regardless of its complexity. Models resulting from random forest (RF), nonlinear support vector machine (SVM), and deep neural network (DNN) learning are interpreted, and structural patterns determining the predicted probability of activity are identified and mapped onto test compounds. The results indicate that SHAP has high potential for rationalizing predictions of complex ML models.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.9b01101DOI Listing

Publication Analysis

Top Keywords

activity predictions
8
predictions complex
8
machine learning
8
learning models
8
structural patterns
8
interpretation compound
4
compound activity
4
complex machine
4
learning
4
models
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!