Neutral polyfluoroalkyl and perfluoroalkyl substances (nPFASs) were detected in the surface water and sediment from the Haihe River (HR) and Dagu Drainage Canal (DDC), Tianjin, China. N-methyl perfluorooctane sulfonamide ethanol (MeFOSE) and N-ethyl perfluorooctane sulfonamide ethanol (EtFOSE) were the predominant nPFASs in surface water and sediment, which was different from the composition in air. The concentrations of ΣnPFASs in water from the HR (1.88-8.21 ng/L) were lower than those from the DDC (3.72-11.32 ng/L). Concentrations of ΣnPFASs were higher in the middle of the HR in the Dongli District due to industrial activity, whereas at lower reaches of the DDC, high ΣnPFAS concentrations might be due to effluent from wastewater treatment plants (WWTPs). The detection frequency in sediment (13.5%) was less than that in water (83%). The concentrations in sediment from the DDC (below limit of qualification (LOQ) to 5.58 ng/g) were higher than those from the HR (below LOQ to 2.46 ng/g). The distribution coefficient (log K) between water and sediment was calculated, and they were highly related to the compound structures. The contribution of nPFASs to nPFASs+PFAAs was up to 52% in sediment in the DDC, suggesting the importance of nPFASs in aquatic systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-019-06331-3 | DOI Listing |
Sci Rep
January 2025
Department of Biology, Boston University, Boston, MA, USA.
Spatial changes in benthic community structure have been observed across natural gradients in deep-sea ecosystems, but these patterns remain under-sampled on seamounts. Here, we identify the spatial composition and distribution of coral and sponge taxa on four sides of a single central Pacific equatorial "model" seamount within the US EEZ surrounding the Howland and Baker unit of the Pacific Islands Heritage Marine National Monument. This seamount rises from 5,000 + m to mesophotic depths of 196 m, and is influenced by the Equatorial Undercurrent.
View Article and Find Full Text PDFEnviron Pollut
January 2025
School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China. Electronic address:
The soils/sediments organic carbon sorption coefficient (K) of organic substances is one of the indispensable environmental behavioral parameters in chemicals management. Because the test procedure used to measure K is normally expensive and time-consuming, predictive methods are considered vitally important technology to fill the data gap of K. In this study, quantitative structure-property relationship (QSPR) models are developed using a data set with 1477 experimental logK values and seven typical machine learning algorithms.
View Article and Find Full Text PDFEnviron Res
January 2025
Southern California Coastal Water Research Project, Costa Mesa, CA, 92626.
The concentration, character, and distribution of microplastics in coastal marine environments remain poorly understood, with most research focusing on the abundance of microplastics at the sea surface. To address this gap, we conducted one of the first comprehensive assessments of microplastic distribution through the marine water column and in the benthic sediment during the wet and dry season in the coastal waters of the San Pedro Shelf, Southern California, USA. Microplastic concentrations in the water column did not vary significantly across season but were significantly higher in nearshore environments and at the surface of the water column.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Facultad de Pesquería, Universidad Nacional Agraria La Molina, Av. La Molina S/N, La Molina, Lima 15024, Peru.
Paracas Bay, located in the Humboldt Current system, is a highly variable coastal environment where hypoxia (dissolved oxygen concentrations <2 mg L) has been reported as a persistent feature of bottom conditions. In addition to hypoxia, milky water events have been reported in the bay, most likely associated with the presence of sulfides (i.e.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China.
Investigations of the spatial-temporal variations of nutrients within mangrove coastal zones are essential for assessing the environmental status of an aquatic ecosystems. However, major processes controlling nitrate cycle along the submarine groundwater discharge (SGD) pathway from the mangrove areas to adjacent tidal creek remain underexplored. A time series measurement over a 25 h tidal cycle was conducted in Qinglan Bay tidal creek (Hainan Island, China).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!