Thorough exploration of alternative dosing frequencies is often not performed in conventional pharmacometrics approaches. Quantitative systems pharmacology (QSP) can provide novel insights into optimal dosing regimen and drug behaviors which could add a new dimension to the design of novel treatments. However, methods for such an approach are currently lacking. Recently, we illustrated the utility of frequency-domain response analysis (FdRA), an analytical method used in control engineering, using several generic pharmacokinetic-pharmacodynamic case studies. While FdRA is not applicable to models harboring ever increasing variables such as those describing tumor growth, studying such models in the frequency domain provides valuable insight into optimal dosing frequencies. Through the analysis of three distinct tumor growth models (cell cycle-specific, metronomic, and acquired resistance), we demonstrate the application of a simulation-based analysis in the frequency domain to optimize cancer treatments. We study the response of tumor growth to dosing frequencies while simultaneously examining treatment safety, and found for all three models that above a certain dosing frequency, tumor size is insensitive to an increase in dosing frequency, e.g., for the cell cycle-specific model, one dose per 3 days, and an hourly dose yield the same reduction of tumor size to 3% of the initial size after 1 year of treatment. Additionally, we explore the effect of drug elimination rate changes on the tumor growth response. In summary, we show that the frequency-domain view of three models of tumor growth dynamics can help in optimizing drug dosing regimen to improve treatment success.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739279 | PMC |
http://dx.doi.org/10.1208/s12248-019-0372-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!