The application of carbon dots as a coreactant for Ru(bpy) (where bpy is 2,2'-bipyridine) electrochemiluminescence (ECL) has been widely studied. However, the high cost of Ru(bpy) and its derivatives has prohibited its widespread use in ECL biosensors. Herein, a novel anodic ECL system based on sulfur-doped graphitic carbon nitride nanosheets (S-g-CN NSs) and nitrogen-doped carbon dots (N-CDs) is presented. In this ECL system, N-CDs serve as a new ECL coreactant that can significantly enhance the anodic ECL signal of S-g-CN NSs (approximately 83 times) under optimal conditions. The possible ECL response mechanism of the S-g-CN NSs/N-CDs system is proposed in detail on the basis of cyclic voltammograms, ECL-time curves, and ECL spectra. Furthermore, the ECL signal of the S-g-CN NSs/N-CDs system was quenched by folic acid (FA), which was chosen as a model analyte to study the potential application of the new ECL system. The ECL intensity decreased linearly with the concentration of FA in the range from 0.05 to 200 μM. The detection limit for FA measurement is 16 nM (signal-to-noise ratio of 3). The proposed new ECL system has many advantages over traditional approaches, such as low toxicity and excellent biocompatibility. Especially, the proposed approach can detect FA in diluted human serum samples with satisfactory recoveries, indicating promising application for bioanalysis. Graphical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-019-02088-3DOI Listing

Publication Analysis

Top Keywords

ecl system
16
carbon dots
12
ecl
12
novel anodic
8
carbon nitride
8
nitride nanosheets
8
nitrogen-doped carbon
8
folic acid
8
anodic ecl
8
s-g-cn nss
8

Similar Publications

2D Flower-like CdS@Co/Mo-MOF as Co-Reaction Accelerator of g-CN-Based Electrochemiluminescence Sensor for Chlorpromazine Hydrochloride.

Biosensors (Basel)

December 2024

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing 400030, China.

In this study, we have proposed an electrochemiluminescence (ECL) signal amplification system which is based on two-dimensional (2D) flower-like CdS@Co/Mo-MOF composites as a co-reaction accelerator of the g-CN/SO system for ultrasensitive detection of chlorpromazine hydrochloride (CPH). Specifically, the 2D flower-like Co/Mo-MOF with mesoporous alleviated the aggregation of CdS NPs while simultaneously fostering reactant-active site contact and improving the reactant-product transport rate. This allowed the material to act as a novel co-reaction accelerator, speeding up the transformation of the SO into SO and enhancing the cathodic ECL emission of g-CN.

View Article and Find Full Text PDF

Novel Dual-Potential Color-Resolved Luminophore Ru(bpy)-Doped CdSe QDs for Bipolar Electrode Electrochemiluminescence Biosensing.

Anal Chem

December 2024

Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.

The classical electrochemiluminescence (ECL) reagent Ru(bpy) was first doped into CdSe QDs to prepare novel dual-potential color-resolved luminophore Ru-CdSe QDs. Ru-CdSe QDs emitted a strong red ECL signal at a positive potential with coreactant TPrA and a strong green ECL signal at a negative potential with coreactant KSO. As a proof-of-concept application, this work introduced Ru-CdSe QDs into a dual-channel closed bipolar electrode (CBPE) system to construct an ECL biosensor for simultaneous detection of chloramphenicol (CAP) and kanamycin (KAN).

View Article and Find Full Text PDF

Enhanced Electrochemiluminescence Detection of Dopamine Using Antifouling PEDOT-Modified SPEs for Complex Biological Samples.

ACS Meas Sci Au

December 2024

Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.

Detecting medically important biomarkers in complex biological samples without prior treatment or extraction poses a major challenge in biomedical analysis. Electrochemical methods, specifically electrochemiluminescence (ECL), show potential due to their high sensitivity, minimal background noise, and straightforward operation. This study investigates the ECL performance of screen-printed electrodes (SPEs) modified with the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives for dopamine (DA) detection.

View Article and Find Full Text PDF

Black phosphorus quantum dots (BPQDs) have shown promising applications in biosensors and energy storage devices. However, the electrochemiluminescence (ECL) properties of pristine BPQDs in an organic system have rarely been reported. In this paper, ,'-dimethylformamide passivated BPQDs with a small size of 2.

View Article and Find Full Text PDF

Advanced Ligase Chain Reaction Strategy to Generate a Circular DNA Walker for Electrochemiluminescent Detection of Single Nucleotide Polymorphism.

Anal Chem

December 2024

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.

Single nucleotide polymorphism (SNP) primarily refers to DNA sequence polymorphism caused by variations in a single nucleotide, which is closely associated with many diseases such as genetic disorders and tumors. However, trace DNA mutants typically exist in a large pool of wild-type DNA, making it challenging to establish accurate and sensitive approaches for SNP detection. Herein, we developed an advanced ligase chain reaction (LCR) strategy to output the circular DNA walker for signal amplification, which realized accuracy and sensitive SNP detection based on the electrochemiluminescent (ECL) platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!