A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metagenomic discovery of feruloyl esterases from rumen microflora. | LitMetric

AI Article Synopsis

  • Feruloyl esterases (FAEs) are important enzymes involved in breaking down ferulic acid links in plant fibers, which is crucial for energy conversion in the cow's rumen.
  • Seven active phagemids were identified from the rumen microbial metagenome, showing genetic sequences related to known FAEs and being expressed and purified in E. coli.
  • The study found diverse FAEs that can cleave different substrates, highlighting their role in efficient fiber digestion within the rumen's complex microbial environment.

Article Abstract

Feruloyl esterases (FAEs) are a key group of enzymes that hydrolyze ferulic acids ester-linked to plant polysaccharides. The cow's rumen is a highly evolved ecosystem of complex microbial microflora capable of converting fibrous substances to energy. From direct cloning of the rumen microbial metagenome, we identified seven active phagemids conferring feruloyl esterase activity. The genomic inserts ranged from 1633 to 4143 bp, and the ORFs from 681 to 1359 bp. BLAST search reveals sequence homology to feruloyl esterases and esterases/lipases identified in anaerobes. The seven genes were expressed in Escherichia coli, and the proteins were purified to homogeneity. The FAEs were found to cover types B, C, and D in the feruloyl esterase classification system using model hydroxycinnamic acid esters. The release of ferulic acid (FA) catalyzed by these enzymes was established using natural substrates corn fiber (CF) and wheat insoluble arabinoxylan (WIA). Three of the enzymes were demonstrated to cleave diferulates and hence the capability to break down Araf-FA-FA-Araf cross-links. The wide variation in the sequence, activity, and substrate specificity observed in the FAEs discovered in this study is a confirming evidence that combined actions of a full range of FAE enzymes contribute to the high-efficiency fiber digestion in the rumen microbial ecosystem.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-019-10102-yDOI Listing

Publication Analysis

Top Keywords

feruloyl esterases
12
rumen microbial
8
feruloyl esterase
8
feruloyl
5
metagenomic discovery
4
discovery feruloyl
4
rumen
4
esterases rumen
4
rumen microflora
4
microflora feruloyl
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!