The multiwalled carbon nanotubes has a myriad of applications due to its unique electrical and mechanical properties. The biomedical application of multiwalled carbon nanotubes that have been reported include drug delivery, medical imaging, gene delivery, tissue regeneration, and diagnostics. Proper characterization is required to enhance the potential application of the multiwalled carbon nanotubes. Terahertz technology is a relatively unfamiliar spectrometric technique that show promise in efficiently characterizing multiwalled carbon nanotubes. In this paper, terahertz imaging was used to characterize multiwalled carbon nanotube in comparison with other characterization techniques, including transmission electron microscopy and field emission scanning electron microscopy. The average diameter of the carbon nanotubes from the reconstructed terahertz images was 48.54 nm, while the average length of a fiber was found to be approximately 1.2 μm. The multiwalled carbon nanotubes were additionally characterized by FTIR, Raman spectroscopy, and Energy-dispersive X-ray spectroscopy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6738974 | PMC |
http://dx.doi.org/10.35248/2157-7439.19.10.535 | DOI Listing |
Langmuir
January 2025
Henan Province Engineering Technology Research Center of MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.
The rapid development of wearable technology, flexible electronics, and human-machine interaction has brought about revolutionary changes to the fields of motion analysis and physiological monitoring. Sensors for detecting human motion and physiological signals have become a hot topic of current research. Inspired by the muscle fiber structure, this paper proposed a highly stable strain sensor that was composed of stretchable Spandex fibers (SPF), multiwalled carbon nanotubes (MWCNTs), and silicone rubber (Ecoflex).
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
Purpose: Multi-walled carbon nanotubes (MWCNTs) were used as carriers for silver nanoparticles (AgNPs). In this process, MWCNTs were coated with mesoporous silica (MWCNT-Silica) for uniform and regular loading of AgNPs on the MWCNTs. In addition, astaxanthin (AST) extract was used as a reducing agent for silver ions to enhance the antioxidant, antibiofilm, and anticancer activities of AgNPs.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
Background: The buildup of methylparaben (MP), a broad-spectrum antimicrobial preservative with endocrine-disrupting properties, in environmental sources, especially aquatic systems, has become a significant concern due to its adverse health effects, including allergic reactions, promoting the risk of developing cancer, and inducing reproductive disorders. Hence, introducing inexpensive and easy-to-use monitoring devices for rapid, selective, and sensitive detection and quantification of MP is highly desirable. In this context, electrochemical platforms have proven to be attractive options due to their remarkable features, such as ease of fabrication and use, short response time, and acceptable sensitivity, accuracy, and selectivity.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Türkiye; BAUZYME Biotechnology Co., Gebze Technical University Technopark, 41400, Gebze, Kocaeli, Türkiye. Electronic address:
α-Amylases, constituting a significant share of the enzyme market, are mainly synthesized by the genus Bacillus. Enzymes tailored for specific industrial applications are needed to meet the growing demand across a range of industries, and thus finding new amylases and optimizing the ones that already exist are extremely important. This study reports the successful expression, characterization and immobilization of P.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, PR China.
In silico methods are increasingly important in predicting the ecotoxicity of engineered nanomaterials (ENMs), encompassing both individual and mixture toxicity predictions. It is widely recognized that ENMs trigger oxidative stress effects by generating intracellular reactive oxygen species (ROS), serving as a key mechanism in their cytotoxicity studies. However, existing in silico methods still face significant challenges in predicting the oxidative stress effects induced by ENMs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!