Interleukin-17A (IL-17A)-producing helper T (Th17) cells are a subset of CD4 T cells that play important pathological roles in autoimmune diseases. Although the intrinsic pathways of Th17 cell differentiation have been well described, how instructive signals derived from the innate immune system trigger the Th17 response and inflammation remains poorly understood. Here, we report that mice deficient in REGγ, a proteasome activator belonging to the 11S family, exhibit significantly deteriorated autoimmune neuroinflammation in an experimental autoimmune encephalomyelitis (EAE) model with augmented Th17 cell polarization in vivo. The results of the adoptive transfer of CD4 T cells or dendritic cells (DCs) suggest that this phenotype is driven by DCs rather than T cells. Furthermore, REGγ deficiency promotes the expression of integrin αvβ8 on DCs, which activates the maturation of TGF-β1 to enhance Th17 cell development. Mechanistically, this process is mediated by the REGγ-proteasome-dependent degradation of IRF8, a transcription factor for αvβ8. Collectively, our findings delineate a previously unknown mechanism by which REGγ-mediated protein degradation in DCs controls the differentiation of Th17 cells and the onset of an experimental autoimmune disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7784850 | PMC |
http://dx.doi.org/10.1038/s41423-019-0287-0 | DOI Listing |
Brain Res Bull
January 2025
Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350000, China; Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou 350000, China. Electronic address:
Background: Pain and depression are common complications in patients with advanced cancer, which significantly affects their quality of life and survival. Dysregulation of the JAK/STAT3 pathway in the central nervous system is associated with pain and brain inflammatory disorders, but its role in bone cancer pain (BCP) remains unclear. This study aimed to investigate the specific role of the JAK/STAT3 pathway in the amygdala in BCP.
View Article and Find Full Text PDFIntroduction: To investigate how adipose-derived mesenchymal stem cells (ADSCs) regulate the balance between regulatory T cells (Treg) and Th17 cells through the IL-2/JAK3/STAT5 signaling pathway in a rat model of allergic rhinitis (AR).
Methods: Adipose-derived stem cells (ADSCs) were used to treat an ovalbumin (OVA)-induced AR rat model. The pathological changes and nasal symptoms were observed by HE staining and scanning electron microscopy.
Int Immunopharmacol
January 2025
School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China. Electronic address:
Callistephus chinensis Nees is an herbaceous plant in the Asteraceae family that has various traditional effects, especially in preventing liver disease. Callistephus A (CA) is a sesquiterpene compound with a rare 6/7 ring skeleton, which has been isolated only from the Callistephus chinensis Nees, but whether CA protects the liver is unknown. Immunological liver injury (ILI) is a common liver disease mediated by the immune system.
View Article and Find Full Text PDFClin Immunol
January 2025
Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, China. Electronic address:
The imbalance between Tregs and proinflammatory Th17 cells in children with biliary atresia (BA) causes immune damage to cholangiocytes. Dimethyl fumarate (DMF), an immunomodulatory drug, regulates the Treg/Th17 balance in diseases like multiple sclerosis (MS). This study explores DMF's effect on Treg/Th17 balance in BA and its potential mechanism.
View Article and Find Full Text PDFPhytomedicine
January 2025
State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; Department of Nephrology, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China. Electronic address:
Background: Huangkui capsule (HKC), a Chinese patent medicine, is clinically used for treating diabetic nephropathy. However, the core disease-specific biomarkers and targets of type 2 diabetic nephropathy (T2DN) and the therapeutic mechanism of HKC are not fully elucidated.
Purpose: This study aimed to investigate the therapeutic effects and underlying molecular mechanisms of HKC for T2DN.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!