The limits of mammography have led to an increasing interest on possible alternatives such as the breast Computed Tomography (bCT). The common goal of all X-ray imaging techniques is to achieve the optimal contrast resolution, measured through the Contrast to Noise Ratio (CNR), while minimizing the radiological risks, quantified by the dose. Both dose and CNR depend on the energy and the intensity of the X-rays employed for the specific imaging technique. Some attempts to determine an optimal energy for bCT have suggested the range 22 keV-34 keV, some others instead suggested the range 50 keV-60 keV depending on the parameters considered in the study. Recent experimental works, based on the use of monochromatic radiation and breast specimens, show that energies around 32 keV give better image quality respect to setups based on higher energies. In this paper we report a systematic study aiming at defining the range of energies that maximizes the CNR at fixed dose in bCT. The study evaluates several compositions and diameters of the breast and includes various reconstruction algorithms as well as different dose levels. The results show that a good compromise between CNR and dose is obtained using energies around 28 keV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739417PMC
http://dx.doi.org/10.1038/s41598-019-49351-2DOI Listing

Publication Analysis

Top Keywords

computed tomography
8
suggested range
8
dose
5
optimization energy
4
breast
4
energy breast
4
breast monochromatic
4
monochromatic absorption
4
absorption x-ray
4
x-ray computed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!