Background: Distal hereditary motor neuronopathies (dHMN) are a group of genetic disorders characterised by motor neuron degeneration leading to muscle weakness that are caused by mutations in various genes. HMNJ is a distinct form of the disease that has been identified in patients from the Jerash region of Jordan. Our aim was to identify and characterise the genetic cause of HMNJ.

Methods: We used whole exome and Sanger sequencing to identify a novel genetic variant associated with the disease and then carried out immunoblot, immunofluorescence and apoptosis assays to extract functional data and clarify the effect of this novel mutation. Physical and neurological examinations were performed on selected patients and unaffected individuals in order to re-evaluate clinical status of patients 20 years after the initial description of HMNJ as well as to evaluate new and previously undescribed patients with HMNJ.

Results: A homozygous missense mutation (c.500A>T, N167I) in exon 4 of the gene was identified, cosegregating with HMNJ in the 27 patients from 7 previously described consanguineous families and 3 newly ascertained patients. The mutant SIGMAR1 exhibits reduced expression, altered subcellular distribution and elevates cell death when expressed.

Conclusion: In conclusion, the homozygous c.500A>T mutation causes dHMN of the Jerash type, possibly due to a significant drop of protein levels. This finding is in agreement with other mutations that have been associated with autosomal recessive dHMN with pyramidal signs; thus, our findings further support that be added to the dHMN genes diagnostic panel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7042970PMC
http://dx.doi.org/10.1136/jmedgenet-2019-106108DOI Listing

Publication Analysis

Top Keywords

distal hereditary
8
hereditary motor
8
jerash type
8
missense mutation
8
patients
6
motor neuronopathy
4
neuronopathy jerash
4
type caused
4
caused novel
4
novel c500a>t
4

Similar Publications

Altered chromatin landscape and 3D interactions associated with primary constitutional MLH1 epimutations.

Clin Epigenetics

December 2024

Hereditary Cancer Group, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.

Background: Lynch syndrome (LS), characterised by an increased risk for cancer, is mainly caused by germline pathogenic variants affecting a mismatch repair gene (MLH1, MSH2, MSH6, PMS2). Occasionally, LS may be caused by constitutional MLH1 epimutation (CME) characterised by soma-wide methylation of one allele of the MLH1 promoter. Most of these are "primary" epimutations, arising de novo without any apparent underlying cis-genetic cause, and are reversible between generations.

View Article and Find Full Text PDF

Background: Hereditary Sensory Motor Neuropathy (HSMN) 1A and Multiple Sclerosis (MS) are distinct demyelinating disorders affecting the peripheral and central nervous systems, respectively. We present a case of simultaneous occurrence of both conditions, exploring the clinical presentation, diagnostic workup, and potential interplay between these diseases. Case presentation and clinical approach: A 49-year-old male with a history of optic neuritis presented with progressive numbness, weakness, and sensory loss in all extremities over four years.

View Article and Find Full Text PDF

Axonal Charcot-Marie-Tooth disease (CMT2) and distal hereditary motor neuropathy (dHMN) are associated with a heterogeneous group of genes encoding proteins that are involved in axonal transport, control of RNA metabolism, mitochondrial dynamics and DNA repair. VRK1 (vaccinia-related kinase 1) is a serine/threonine kinase which is widely expressed in human tissue and plays a role in RNA maturation and processing and in DNA damage response. Variants of VRK1 have been associated with neurodevelopmental and neuromuscular disorders including pontocerebellar hypoplasia, motor neuron disorders and distal hereditary motor neuropathy.

View Article and Find Full Text PDF

ECEL1 mutation in distal arthrogryposis type 5D: A case report.

Eur J Obstet Gynecol Reprod Biol

December 2024

Department of Neonatology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India. Electronic address:

Background: Arthrogryposis multiplex congenita involves joint contractures across various body parts. Distal arthrogryposis type 5D (DA5D) is a rare, autosomal recessive subtype affecting distal extremities, with symptoms like knee extension contractures, camptodactyly, overriding fingers, ulnar wrist deviation, and scoliosis.

Case: A 24-year-old pregnant woman with a second-degree relative partner had a fetus showing increased nuchal translucency (3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!