-Glycosylation of the voltage-gated sodium channel β2 subunit is required for efficient trafficking of Na1.5/β2 to the plasma membrane.

J Biol Chem

Cardiovascular Genetics Group-Girona Biomedical Research Institute (IDIBGI), University of Girona Medical School, C/ Doctor Castany, s/n-Edifici IDIBGI, 17190 Salt-Prov. Girona, Spain

Published: November 2019

The voltage-gated sodium channel is critical for cardiomyocyte function and consists of a protein complex comprising a pore-forming α subunit and two associated β subunits. It has been shown previously that the associated β2 subunits promote cell surface expression of the α subunit. The major α isoform in the adult human heart is Na1.5, and germline mutations in the Na1.5-encoding gene, sodium voltage-gated channel α subunit 5 (), often cause inherited arrhythmias. Here, we investigated the mechanisms that regulate β2 trafficking and how they may determine proper Na1.5 cell surface localization. Using heterologous expression in polarized Madin-Darby canine kidney cells, we show that β2 is -glycosylated and at residues 42, 66, and 74, becoming sialylated only at Asn-42. We found that fully nonglycosylated β2 was mostly retained in the endoplasmic reticulum, indicating that -linked glycosylation is required for efficient β2 trafficking to the apical plasma membrane. The nonglycosylated variant reached the cell surface by bypassing the Golgi compartment at a rate of only approximately one-third of that of WT β2. YFP-tagged, nonglycosylated β2 displayed mobility kinetics in the plane of the membrane similar to that of WT β2. However, it was defective in promoting surface localization of Na1.5. Interestingly, β2 with a single intact glycosylation site was as effective as the WT in promoting Na1.5 surface localization. In conclusion, our results indicate that -linked glycosylation of β2 is required for surface localization of Na1.5, a property that is often defective in inherited cardiac arrhythmias.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6827310PMC
http://dx.doi.org/10.1074/jbc.RA119.007903DOI Listing

Publication Analysis

Top Keywords

surface localization
16
cell surface
12
β2
11
voltage-gated sodium
8
sodium channel
8
required efficient
8
plasma membrane
8
β2 trafficking
8
nonglycosylated β2
8
-linked glycosylation
8

Similar Publications

Objective: To investigate the altered characteristics of cortical morphology and individual-based morphological brain networks in type 2 diabetes mellitus (T2DM), as well as the neural network mechanisms underlying cognitive impairment in T2DM.

Methods: A total of 150 T2DM patients and 130 healthy controls (HCs) were recruited in this study. The study used voxel- and surface-based morphometric analyses to investigate morphological alterations (including gray matter volume, cortical thickness, cortical surface area, and localized gyrus index) in the brains of T2DM patients.

View Article and Find Full Text PDF

The investigation of changes in the membrane of cancer cells holds great potential for biomedical applications. Malignant cells exhibit overexpression of receptors, which can be used for targeted drug delivery, therapy, and bioimaging. Targeted bioimaging is one the most accurate imaging methods with a non-invasive nature, allowing for localization of the malignant cell without disrupting cellular integrity.

View Article and Find Full Text PDF

A multiomic study of the structural characteristics of type A and B influenza viruses by means of highly spectrally resolved Raman spectroscopy is presented. Three virus strains, A H1N1, A H3N2, and B98, were selected because of their known structural variety and because they have co-circulated with variable relative prevalence within the human population since the re-emergence of the H1N1 subtype in 1977. Raman signatures of protein side chains tyrosine, tryptophan, and histidine revealed unequivocal and consistent differences for pH characteristics at the virion surface, while different conformations of two C-S bond configurations in and methionine rotamers provided distinct low-wavenumber fingerprints for different virus lineages/subtypes.

View Article and Find Full Text PDF

Magnesium ions regulate the Warburg effect to promote the differentiation of enteric neural crest cells into neurons.

Stem Cell Res Ther

January 2025

Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China.

Background: Understanding how enteric neural crest cells (ENCCs) differentiate into neurons is crucial for neurogenesis therapy and gastrointestinal disease research. This study explores how magnesium ions regulate the glycolytic pathway to enhance ENCCs differentiation into neurons.

Materials And Methods: We used polymerase chain reaction, western blot, immunofluorescence, and multielectrode array techniques to assess magnesium ions' impact on ENCCs differentiation.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) is a critical signaling molecule with significant roles in various physiological processes in plants. Understanding its regulation through in situ monitoring could offer deeper insights into plant responses and stress mechanisms. In this study, we developed a microneedle electrochemical sensor to monitor HO in situ, offering deeper insights into plant stress responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!