Rejuvenation of chicory and lettuce plants following phase change in tissue culture.

BMC Biotechnol

Bio-Protection Research Centre, Lincoln University, P.O. Box 85084, Canterbury, 7647, New Zealand.

Published: September 2019

Background: A frequent problem associated with the tissue culture of Compositae species such as chicory (Cichorium intybus L.) and lettuce (Lactuca sativa L.) is the premature bolting to in vitro flowering of regenerated plants. Plants exhibiting such phase changes have poor survival and poor seed set upon transfer from tissue culture to greenhouse conditions. This can result in the loss of valuable plant lines following applications of cell and tissue culture for genetic manipulation.

Results: This study demonstrates that chicory and lettuce plants exhibiting stable in vitro flowering can be rejuvenated by a further cycle of adventitious shoot regeneration from cauline leaves. The resulting rejuvenated plants exhibit substantially improved performance following transfer to greenhouse conditions, with increased frequency of plant survival, a doubling of the frequency of plants that flowered, and substantially increased seed production.

Conclusion: As soon as in vitro flowering is observed in unique highly-valued chicory and lettuce lines, a further cycle of adventitious shoot regeneration from cauline leaves should be implemented to induce rejuvenation. This re-establishes a juvenile phase accompanied by in vitro rosette formation, resulting in substantially improved survival, flowering and seed set in a greenhouse, thereby ensuring the recovery of future generations from lines genetically manipulated in cell and tissue culture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6737603PMC
http://dx.doi.org/10.1186/s12896-019-0557-zDOI Listing

Publication Analysis

Top Keywords

tissue culture
20
chicory lettuce
12
vitro flowering
12
lettuce plants
8
plants exhibiting
8
seed set
8
greenhouse conditions
8
cell tissue
8
cycle adventitious
8
adventitious shoot
8

Similar Publications

Lineage Recording in Human Brain Organoids with iTracer.

Methods Mol Biol

January 2025

Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.

Induced pluripotent stem cell (iPSC)-derived organoids provide models to study human organ development. Single-cell transcriptomics enables highly resolved descriptions of cell states within these systems; however, approaches are needed to directly determine the lineage relationship between cells. Here we provide a detailed protocol (Fig.

View Article and Find Full Text PDF

Hox genes are highly conserved developmental regulators instrumental to the formation of a wide range of diverse body plans across metazoans. While significant progress in the field of Hox gene research has been made, persistent challenges in unraveling their mechanisms of action and full repertoire of functions remain. To date, investigations of Hox gene function have been primarily conducted in research models belonging to ecdysozoa and vertebrata.

View Article and Find Full Text PDF

Bimolecular Fluorescence Complementation (BiFC) is a powerful molecular imaging method used to visualize protein-protein interactions (PPIs) in living cells or organisms. BiFC is based on the reassociation of hemi-fragments of a monomeric fluorescent protein upon spatial proximity. It is compatible with conventional light microscopy, providing a resolution that is constrained by the diffraction of light to around 250 nm.

View Article and Find Full Text PDF

Chronic fracture-related infection is a complex, costly clinical problem with a wide spectrum of clinical presentations. The goals of treatment are infection control with a healed fracture covered by well-vascularized soft tissue and improvement of patient pain and function. Management is both medical, with culture-targeted antimicrobial agents, and surgical, requiring meticulous irrigation and débridement.

View Article and Find Full Text PDF

Microtia profoundly affects patients' appearance and psychological well-being. Tissue engineering ear cartilage scaffolds have emerged as the most promising solution for ear reconstruction. However, constructing tissue engineering ear cartilage scaffolds requires multiple passaging of chondrocytes, resulting in their dedifferentiation and loss of their special phenotypes and functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!