Background: The global burden of sexually transmitted infections (STIs) is high and there have been reports of increasing chlamydial and gonorrheal infections. High-volume screening programs for Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) are an important component of STI control. This study evaluated the high-volume workflow and performance of the cobas® CT/NG assay for use on the automated Roche cobas® 6800 system, with the cobas p 480 instrument for pre-analytics, compared with the Aptima Combo 2 assay on the Hologic Panther system.

Methods: High-volume workflow and performance were evaluated using paired female urine specimens. Workflow analysis (n = 376) included hands-on time (HoT), number of manual interventions, and time to first and last results. For performance assessment, paired results from the cobas CT/NG and Aptima Combo 2 assays, for both CT and NG, were compared and two-sided 95% confidence intervals calculated to provide estimates of positive percent agreement (PPA), negative percent agreement (NPA), and overall percent agreement (OPA) between the tests. McNemar's test was used for significance testing.

Results: Pre-analytical preparations and system start-up on the cobas 6800 system required 00:27:38 (hr:min:sec) HoT whilst the Panther system required 00:30:43. The cobas 6800 system required eight interactions and 00:43:59 HoT to process 376 samples. The Panther system required six interactions and 00:39:10 HoT. Time to first results was 02:53:00 on the cobas c6800 system for 96 samples and 03:28:29 on the Panther system for five samples. The cobas 6800 system delivered all 376 results 3 h faster than the Panther system (07:45:26 and 10:47:30, respectively). The performance correlation between both assays was high (PPA, NPA and OPA > 99% for both CT and NG). McNemar's test revealed no statistically significant difference between the assays.

Conclusion: For high-volume automated CT/NG testing, both the cobas 6800 system and Panther system provided accurate results. Although less manual intervention steps were needed for the Panther system, improved turnaround time was obtained with the cobas 6800 system with less risk for contamination. The additional testing capacity on the cobas 6800 system would allow a growing service to deliver more results in a single shift.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6737607PMC
http://dx.doi.org/10.1186/s12879-019-4442-0DOI Listing

Publication Analysis

Top Keywords

6800 system
28
cobas 6800
24
panther system
24
system required
16
system
15
high-volume workflow
12
workflow performance
12
percent agreement
12
cobas
9
chlamydia trachomatis
8

Similar Publications

We present a comprehensive overview of the commissioning process and initial results of a synchrotron beamline dedicated to atomic, molecular, and optical sciences at the BL-5 undulator port of the Indus-2 synchrotron facility, Raja Ramanna Center for Advanced Technology, Indore, India. The beamline delivers a photon flux of ∼1012 photons/s with high resolving power (∼10 000) over an energy range of 6-800 eV, making it suitable for high-resolution spectroscopy in atomic, molecular, and optical science. The energy tunability from vacuum ultraviolet to soft x-ray (6-800 eV) is achieved through a varied line spacing plane grating monochromator with four gratings: very low energy (VLEG), low energy (LEG), medium energy (MEG), and high energy (HEG).

View Article and Find Full Text PDF

Use of In Situ X-ray Absorption to Probe Reactivity: A Catalysis Golden Rule.

J Am Chem Soc

December 2024

Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.

The decomposition of ozone on supported manganese oxide catalysts, studied here, exemplifies reactions involving electron transfer. In situ extended X-ray absorption fine-structure spectra (Mn K-edge) on in situ treated samples show that the supported phase in MnO/SiO resembles MnO while that in MnO/AlO samples resembles MnO. In situ Raman spectroscopy shows the involvement of a common peroxide surface species.

View Article and Find Full Text PDF

Considering the widespread use of PHEVs in advanced societies and the issues ahead, researchers' thinking has focused more on this issue. The important issue is that the use of EVs is increasing due to the advantages, but the necessary infrastructure for their charging stations in the distribution networks does not exist. The high penetration level of EVs can create a potential risk for the existing distribution network; the fair charging of EVs has a special value.

View Article and Find Full Text PDF

This paper reports the utilization of cost-effective bottom-contact electrodes composed of aluminum (Al) and titanium (Ti) to facilitate efficient electron injection in n-channel organic transistors. The optimized Al/Ti electrode has a low work function of around 4.03 eV, combining the high conductivity of Al with the stable interface of Ti, making it highly suitable for the electrodes of n-channel transistors.

View Article and Find Full Text PDF

Although Mg-Li dual metal-ion batteries are proposed as a superior system that unite safety of Mg-batteries and performance of Li-ion based systems, its practical implantation is limited due to the lack of reliable high performance cathodes. Herein, we report a high-performance Mg-Li dual metal-ion battery system based on highly pseudocapacitive hierarchical TiO2-B nanosheet assembled spheres (NS) cathode. This 2D cathode displayed exceptional pseudocapacitance (a maximum of 93%) specific capacity (303 mAh/g at 25 mA/g), rate performance (210 mAh/g at 1A/g), consistent cycling (retain ~100% capacity for 3000 cycles at 1A/g), coulombic efficiency (nearly 100%) and fast-charging (~12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!