In this paper, we present a patterned graphene-hBN metamaterial structure and theoretically demonstrate the tunable multi-wavelength absorption within the hybrid structure. The simulation results show that the hybrid plasmon-phonon polariton modes originate from the coupling between plasmon polaritons in graphene and phonons in hBN, which are responsible for the triple-band absorption. By varying the Fermi level of graphene patterns, the absorption peaks can be tuned dynamically and continuously, and the surface plasmon-phonon polariton modes in the proposed structure enable high absorption and wideband tunability. In addition, how different structural parameters affect the absorption spectra is discussed. This work provides us a new method for the control and enhancement of plasmon-phonon polariton interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.023576 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!