We investigate the evolution of nonlinear dynamic behaviors of two polarization components (x-PC and y-PC), as well as the interplay of polarization bistability, frequency detuning and injection strength in the vertical cavity surface emitting laser with optical injection. Specifically, by encoding two logic inputs and one clock input in the amplitude of the light from a sampled grating distributed Bragg reflector laser, and by decoding two output logic responses from the x-PC and y-PC emitted by the laser, we demonstrate two parallel data-selection computing. The correct logic output encoded in two emitted PCs response for as short as 100 ps bit time and the response bit time of the correct logic output encoded in the y-PC may be 67 ps by the optimization of the injection strength. The probability of a correct response is controlled by the interplay of the bit time, the injection strength and noise strength, and is equal to 1 in a wide region of the injection strength and noise strength. The chaotic data-selection computing in an optically VCSEL offer interesting perspectives for applications where noise is unavoidable and fast switching is required.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.023357 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!