Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Frequency doublers are widely used in high-resolution spectroscopy to shift the operation wavelength of a laser to a more easily accessible or otherwise preferable spectral region. We investigate the use of a periodically-poled lithium niobate (PPLN) waveguide frequency doubler in an optical clock. We focus on the phase evolution between the fundamental (1396 nm) and frequency-doubled (698 nm) light and its effect on clock performance. We find that the excess phase noise of the doubler under steady-state operation is at least two orders of magnitude lower than the noise of today's best interrogation lasers. Phase chirps related to changes of the optical power in the doubler unit and their influence on the accuracy of optical clocks are evaluated. We also observe substantial additional noise when characterizing the doubler unit with an optical frequency comb instead of using two identical waveguide doublers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.023262 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!