A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reproducing the morphology-dependent resonances of spheres with the discrete dipole approximation. | LitMetric

During the development and application of a scattering algorithm, its accuracy is normally validated by comparing with results of spherical particles given by the exact Mie theory. Being the simplest shape, sphere supports morphology-dependent resonances (MDRs), which cause sharp variations of the scattering properties in narrow size ranges. We show that MDRs may mislead the validation of any volume- or surface-discretization methods, including the discrete dipole approximation (DDA) and, thus, should be explicitly avoided. However, the brute-force DDA simulations can actually capture the narrow peaks in the extinction efficiency over the size parameter, but only if a dipole size parameter is smaller than twice the MDR width. That is much more computationally intensive than typical DDA simulations. We find that a single Lorentzian MDR peak may be split into two due to the symmetry breaking by the DDA discretization. Furthermore, instead of time-consuming high-resolution DDA simulations for reproducing MDR, we developed and validated a significantly more computationally efficient method. It is based, first, on fitting simulated data with one or two Lorentzian peaks combined with a cubic baseline. Second, we use Richardson extrapolation of peak parameters to zero dipole size, exploiting the smooth convergence of these parameters towards the reference Mie values. When applied to two MDRs with relative widths 2 × 10 and 9 × 10, the developed workflow, powered by intensive simulations, reproduces the peak positions with unprecedented accuracy - errors less than 0.07% and 0.4% of their widths, respectively. This extends the way for studying the evolution of the MDR under non-axisymmetric deformations of a sphere or a spheroid.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.022827DOI Listing

Publication Analysis

Top Keywords

dda simulations
12
morphology-dependent resonances
8
discrete dipole
8
dipole approximation
8
size parameter
8
dipole size
8
dda
5
reproducing morphology-dependent
4
resonances spheres
4
spheres discrete
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!