In this work, we apply for the first time a machine learning approach to design and optimize VO based nanostructured smart window performance. An artificial neural network was trained to find the relationship between VO smart window structural parameters and performance metrics-luminous transmittance (T) and solar modulation (ΔT), calculated by first-principle electromagnetic simulations (FDTD method). Once training was accomplished, the combination of optimal T and ΔT was found by applying classical trust region algorithm on the trained network. The proposed method allows flexibility in definition of the optimization problem and provides clear uncertainty limits for future experimental realizations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.0A1030 | DOI Listing |
Ambio
January 2025
ECOAN, Pasaje Navidad U-10, Urb. Ttio, Wanchaq, Cusco, Peru.
The Inca and their immediate predecessors provide an exceptional model of how to create high-altitude functional environments that sustainably feed people with a diversity of crops, whilst mitigating erosion, protecting forestry and maintaining soil fertility without the need for large-scale burning. A comparison is provided here of landscape practices and impacts prior to and after the Inca, derived from a unique 4200-year sedimentary record recovered from Laguna Marcacocha, a small, environmentally sensitive lake located at the heart of the Inca Empire. By examining ten selected proxies of environmental change, a rare window is opened on the past, helping to reveal how resilient watershed management and sustainable, climate-smart agriculture were achieved.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China. Electronic address:
Thermochromic smart windows have been widely developed for building energy saving. However, most smart windows suffer from limited energy-saving performance, fixed phase transition temperature, and are not suitable for the temperature regulation needs of different application scenarios. Herein, a unique self-adaptive thermochromic hydrogel (HBPEC-PNA) with self-moisture-absorbing performance is reported that assembles solar energy cooling and evaporative heat dissipation.
View Article and Find Full Text PDFACS Nano
January 2025
Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China.
Since the electrochemical potential of lithium metal was systematically elaborated and measured in the early 19th century, lithium-ion batteries with liquid organic electrolyte have been a key energy storage device and successfully commercialized at the end of the 20th century. Although lithium-ion battery technology has progressed enormously in recent years, it still suffers from two core issues, intrinsic safety hazard and low energy density. Within approaches to address the core challenges, the development of all-solid-state lithium-ion batteries (ASSLBs) based on halide solid-state electrolytes (SSEs) has displayed potential for application in stationary energy storage devices and may eventually become an essential component of a future smart grid.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
Thermochromic smart windows effectively reduce the energy consumption for buildings through passive light modulation including the transmission of visible (T) and near-infrared (T) light, and the emissivity of mid-infrared (ε) light in response to ambient temperature change. However, thermochromic windows that maintain high T while modulating T and ε simultaneously are highly desirable but still challenging. Here, we develop a thermochromic smart window based on a two-way shape memory polymer to enable reversible transformation and achieve T modulation of 44.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Energy and Power Engineering, Beihang University, Beijing, 100191, China.
Perovskite smart windows (PSWs) are widely investigated owing to excellent thermochromic properties, while restricted by poor transition performance and cycle stability. Herein, dimethyl sulfoxide vapor is utilized as an induction reagent for rapid reversible switching at room temperature between the colored and bleached phases. To obtain PSWs with different optical properties and transition performance, red CsPbIBr, yellow RbCsPbIBr and brown CsSnPbIBr are prepared through alloying.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!