We demonstrate an all-optical active mode of dielectric microdroplet splitting in a sandwich structure consisting of two anti-symmetrical y-cut LN:Fe substrates. The dynamic process of the microdroplet splitting and the simulation of the electrostatic interaction inside the sandwich gap show that the combination of two anti-symmetrical substrates are capable to provide a sufficient dielectrophoretic force and to reduce the unbalance of the drag forces for a stable and efficient splitting of the microdroplet. The dependences of the splitting time on the illumination intensity and the initial microdroplet size are also studied, and the results show that the microdroplet splitting process is fully governed by the establishment of the superposed photovoltaic field inside the sandwich gap. A key ratio E/E, representing the microdroplet splitting difficulty for a given sandwich structure, is found linearly dependent on the initial microdroplet size. These points are quite important to the integration of splitting functionality on the LN-based microfluidic chip.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.025767 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
DWI-Leibniz-Institute for Interactive Materials, 52074, Aachen, Germany.
The development of sustainable synthesis route to produce functional and bioactive polymer colloids has attracted much attention. Most strategies are based on the polymerization of monomers or crosslinking of prepolymers by enzyme- or cell-mediated reactions or specific catalysts in confined emulsions. Herein, a facile solution spray method was developed for spontaneous synthesis of microgels without use of confined emulsion, additional initiators/catalysts and deoxygenation, which addresses the challenges in traditional microgel synthesis.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, QC, Canada.
Accurate surface tension measurements are key to understanding and predicting the behavior of atmospheric aerosols, particularly their formation, growth, and phase transitions. In Earth's atmosphere, aerosols often exist in metastable states, such as being supercooled or supersaturated. Standard tensiometry instruments face challenges in accessing these states due to the large sample volumes they require and rapid phase changes near surfaces.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Institut Max von Laue-Paul Langevin, 71 Av. des Martyrs, 38042 Grenoble, France.
Liquid-liquid phase separation (LLPS) constitutes a crucial phenomenon in biological self-organization, not only intervening in the formation of membraneless organelles but also triggering pathological protein aggregation, which is a hallmark in neurodegenerative diseases. Employing incoherent quasi-elastic neutron spectroscopy (QENS), we examine the short-time self-diffusion of a model protein undergoing LLPS as a function of phase splitting and temperature to access information on the nanosecond hydrodynamic response to the cluster formation both within and outside the LLPS regime. We investigate the samples as they dissociate into microdroplets of a dense protein phase dispersed in a dilute phase as well as the separated dense and dilute phases obtained from centrifugation.
View Article and Find Full Text PDFSmall
October 2024
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China.
Langmuir
August 2024
SERB Sponsored Microfluidics Laboratory, Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India.
Despite extensive research on droplet dynamics at microfluidic T-junction, for different droplet lengths and Capillary numbers, there remains limited understanding of their dynamics at different viscosity ratio. In this study, we adopt a modeling framework in a three-dimensional (3D) configuration to numerically investigate the droplet dynamics as it passes through a symmetric T-junction with varying Capillary numbers, droplet lengths, and viscosity ratios. We present a 3D regime map for the first time to demarcate the droplet breakup and no breakup regimes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!