AI Article Synopsis

  • A rate-equation model has been created to simulate laser-induced fluorescence of carbon monoxide (CO) in a specific wavelength band, with results compared to experimental data from various laser pulse types.
  • The model showed that at low laser power, CO fluorescence signals are quadratically related to laser intensity, but change to sublinear relationships at higher intensities due to photoionization effects.
  • Additionally, simulations indicate that the most effective CO signal occurs with a transform-limited femtosecond pulse that can adequately cover the necessary absorption spectrum, making this model useful for studying other combustion species as well.

Article Abstract

A model based on rate-equation analysis has been developed for simulation of two-photon-excited laser-induced fluorescence of carbon monoxide (CO) in the Hopfield-Birge band at 230 nm. The model has been compared with experimental fluorescence profiles measured along focused beams provided by lasers emitting nano-, pico-, and femtosecond pulses. Good quantitative agreement was obtained between simulations and experimental data obtained in premixed CH/CH-air flames. For excitation with femtosecond pulses, experimental and simulated fluorescence signals showed quadratic dependence on laser power under conditions of low laser irradiance, whereas different sublinear dependencies were obtained at higher irradiances due to photoionization. Simulations of CO signal versus femtosecond laser linewidth suggest the strongest signal for a transform-limited pulse, which is sufficiently broad spectrally to cover the CO Q-branch absorption spectrum. Altogether, the developed rate-equation model allows for analysis of two-photon excitation fluorescence to arrange suitable diagnostic configurations and retrieve quantitative data for CO as well as other species in combustion, such as atomic oxygen and hydrogen.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.025656DOI Listing

Publication Analysis

Top Keywords

femtosecond pulses
8
two-photon-excited fluorescence
4
fluorescence experiments
4
experiments modeling
4
modeling model
4
model based
4
based rate-equation
4
rate-equation analysis
4
analysis developed
4
developed simulation
4

Similar Publications

A Submicrosecond-Response Ultrafast Microwave Ranging Method Based on Optically Generated Frequency-Modulated Pulses.

Sensors (Basel)

December 2024

National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 622150, China.

An ultrafast microwave ranging method based on optically generated frequency-modulated microwave pulses is proposed in this study. The theoretical analysis demonstrated that nanosecond-scale linear frequency modulation microwave pulse can be obtained by femtosecond laser interference under the condition of unbalanced dispersion, which can be used to achieve a high temporal resolution of the displacement change in the measurement by the principle of frequency modulation continuous wave (FMCW) radar. The proof-of-principle experiment successfully measured the displacement change with an error of 2.

View Article and Find Full Text PDF

In this study, we report, for the first time, to the best of our knowledge, on in-volume glass modifications produced by GHz bursts of femtosecond pulses. We compare three distinct methods of energy deposition in glass, i.e.

View Article and Find Full Text PDF

Achieving highly tailored control over both the spatial and temporal evolution of light's orbital angular momentum (OAM) on ultrafast timescales remains a critical challenge in photonics. Here, we introduce a method to modulate the OAM of light on a femtosecond scale by engineering a space-time coupling in ultrashort pulses. By linking azimuthal position with time, we implement an azimuthally varying Fourier transformation to dynamically alter light's spatial distribution in a fixed transverse plane.

View Article and Find Full Text PDF

Anion photoelectron velocity-map imaging using a tunable laser at a 100 kHz repetition rate.

J Chem Phys

January 2025

Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

We present velocity-map imaging (VMI) of photoelectrons detached from anions using an optical parametric amplifier operating at a repetition rate as high as 100 kHz. The light source generates femtosecond (fs) laser pulses tunable from near-infrared to ultraviolet (310-2600 nm), which interact synchronously with mass-selected anion bunches. We demonstrate this technique by measuring two-dimensional projections of photoelectrons ejected from silver trimer anions, Ag3-, across a photon energy range from 2.

View Article and Find Full Text PDF

Laser-induced photothermal therapy using gold nanoparticles (AuNPs) has emerged as a promising approach to cancer therapy. However, optimizing various laser parameters is critical for enhancing the photothermal conversion efficacy of plasmonic nanomaterials. In this regard, the present study investigates the photothermal effects of dodecanethiol-stabilized hydrophobic ultrasmall spherical AuNPs (TEM size 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!