Anisotropic transverse light scattering by prismatic nanowires is a natural outcome of their geometry. In this work, we perform numerical calculations of the light scattering characteristics for nanowires in the optical and near-infrared range and explore the possibility of tuning the directivity by changing the angle of light incidence. The scattering cross section and the directivity of the scattered light when it is incident perpendicular to a facet or to an edge of the prism are investigated both with transverse electric and with transverse magnetic polarizations. The phenomenology includes Mie resonances and guided modes yielding together rich and complex spectra. We consider nanowires with hexagonal, square and triangular cross sections. The modes that are most sensitive to the incidence angle are the hexapole for the hexagonal case and the quadrupole for the square case. Higher order modes are also sensitive, but mostly for the square geometry. Our results indicate the possibility of a flexible in-situ tunability of the directivity simply by rotating the nanowire profile relatively to the direction of the incident light which could offer potential advantages in applications such as switching or sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.025502DOI Listing

Publication Analysis

Top Keywords

light scattering
12
scattering prismatic
8
modes sensitive
8
light
5
anisotropic light
4
scattering
4
prismatic semiconductor
4
nanowires
4
semiconductor nanowires
4
nanowires anisotropic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!