The mass production and commercialization of integrated photonics have been slowed down by the high cost of packaging its optical interfaces. We show a plug-and-play connector between a fiber and a nanophotonic waveguide consisting of a 3D polymer structure with a fiber entrance port that simultaneously achieves mechanical and optical passive alignment with tolerance beyond ±10 μm to the fiber input position. We take advantage of a mechanical and optical co-design, analogous to commercial fiber-to-fiber connectors. We fabricate the plug-and-play couplers using 3D nanoprinting directly on foundry fabricated diffraction grating couplers. We measure an average of only 0.05 dB excess coupling loss between a single mode fiber and a high confinement silicon waveguide in addition to the inherent grating coupler loss. Our coupling platform offers a passive plug-and-play solution for scalable integrated photonics fiber-chip packaging.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.020305DOI Listing

Publication Analysis

Top Keywords

integrated photonics
8
mechanical optical
8
plug-and-play
4
plug-and-play fiber
4
fiber waveguide
4
waveguide connector
4
connector mass
4
mass production
4
production commercialization
4
commercialization integrated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!