Primarily due to recent advances of detection techniques, microchimerism (the proportion of minor variant population is below 1%) has recently gained increasing attention in the field of transplantation. Availability of polymorphic markers, such as deletion insertion or single nucleotide polymorphisms along with a vast array of high sensitivity detection techniques, allow the accurate detection of small quantities of donor- or recipient-related materials. This diagnostic information can improve monitoring of allograft injuries in solid organ transplantations (SOT) as well as facilitate early detection of relapse in allogeneic hematopoietic stem cell transplantation (allo-HSCT). In the present review, genetic marker and detection platform options applicable for microchimerism detection are discussed. Furthermore, current results of relevant clinical studies in the context of microchimerism and SOT or allo-HSCT respectively are also summarized.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769866 | PMC |
http://dx.doi.org/10.3390/ijms20184450 | DOI Listing |
N Engl J Med
January 2025
From the Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Background: Allogeneic hematopoietic stem-cell transplantation is the only curative treatment for myelofibrosis. Driver mutations are the pathophysiological hallmark of the disease, but the role of mutation clearance after transplantation is unclear.
Methods: We used highly sensitive polymerase-chain-reaction technology to analyze the dynamics of driver mutations in peripheral-blood samples from 324 patients with myelofibrosis (73% with mutations, 23% with mutations, and 4% with mutations) who were undergoing transplantation after reduced-intensity conditioning.
Biol Open
December 2024
Research Center for Integrative Evolutionary Science, SOKENDAI 240-0193 Shonan Village, Hayama, Kanagawa, Japan.
We are naturally chimeras. Apart from our own cells originating from the fertilized egg, placental mammals receive small numbers of maternal cells called maternal microchimerism (MMc) that persist throughout one's whole life. Not only are varying frequencies of MMc cells reported in seemingly contradicting phenomena, including immune tolerance and possible contribution to autoimmune-like disease, but frequencies are observable even among healthy littermates showing varying MMc frequencies and cell type repertoire.
View Article and Find Full Text PDFForensic Sci Int
December 2024
Department of Science, Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey. Electronic address:
Microchimerism (MC) refers to the presence of small amounts of foreign cells or DNA in the tissues or circulation of an individual. It generally occurs through mother-fetus interaction, twin pregnancies, and intergenerational transmission. MC is influenced by genetic and environmental factors such as toxic conditions, immunological suppression, and various diseases (influenza, COVID-19, etc.
View Article and Find Full Text PDFAnn Hematol
December 2024
Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
Transient abnormal myelopoiesis (TAM) generally affects newborns with Down syndrome and is associated with constitutional trisomy 21 and a somatic GATA1 mutation. Here we describe a case of TAM which evolved after umbilical cord blood transplantation (UCBT), whose origin was identified as a GATA1 mutation-harboring clone in umbilical cord blood (UCB) by detailed genetic analyses. A 58-year-old male who received UCBT for peripheral T-cell lymphoma presented progressive anemia and thrombocytopenia, and leukocytosis with blast cells in the peripheral blood (PB).
View Article and Find Full Text PDFTransfus Med Hemother
December 2024
Blood Transfusion Institute of Serbia, Belgrade, Serbia.
Introduction: ABO blood type changes after ABO-incompatible hematopoietic stem cell transplantation (HSCT). Most non-hematopoietic tissues retain the expression of the patient's own ABO antigens, which may adsorb from the plasma onto the donor's red blood cells (RBCs). Because of this phenomenon, a persistent patient's A and/or B antigen could be detected in the laboratory, despite 100% white cell donor chimerism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!