Effect of divalent nickel on the anammox process in a UASB reactor.

Chemosphere

College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China. Electronic address:

Published: July 2019

The anaerobic ammonium oxidation (anammox) process has the advantages of a high nitrogen removal rate, low operational cost, and small footprint and has been successfully implemented to treat high-content ammonium wastewater. However, very little is known about the toxicity of the heavy metal element Ni(II) to the anammox process. In this study, the short- and long-term effects of Ni(II) on the anammox process in an upflow anaerobic sludge blanket (UASB) reactor were revealed. The results of the short-term batch test showed that the half maximal inhibitory concentration (IC) of Ni(II) on anammox biomass was 14.6 mg L. A continuous-flow experiment was performed for 150 days of operation, and the results illustrated that after domestication, the achieved nitrogen removal efficiency was up to 93±0.03% at 10 mg L Ni(II). The settling velocity, specific anammox activity and EPS content decreased as the Ni(II) concentration increased. Nevertheless, the content of heme c increased as the Ni(II) increased. These results indicate that short-term exposure to Ni(II) has an adverse impact on anammox process, but the anammox system could tolerate 10 mg L Ni(II) stress after acclimation during continuous-flow operation for 150 days. High-throughput sequencing results indicated that the presence of Ni(II) had an impact on the microbial community composition in the anammox reactor, especially Candidatus Kuenenia. At Ni(II) concentrations of 0-10 mg L, the relative abundance of Candidatus Kuenenia decreased from 36.23% to 28.46%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2019.03.121DOI Listing

Publication Analysis

Top Keywords

anammox process
20
niii anammox
12
niii
10
anammox
9
uasb reactor
8
nitrogen removal
8
150 days
8
candidatus kuenenia
8
process
5
divalent nickel
4

Similar Publications

Enhanced prediction of partial nitrification-anammox process in wastewater treatment by developing an attention-based deep learning network.

J Environ Manage

January 2025

School of Artificial Intelligence, Xidian University, No. 2 South Taibai Road, Xi'an, Shaanxi, 710071, China.

In the process of partial nitrification and anaerobic ammonia oxidation (anammox) for nitrogen removal, the process offers simple metabolic pathways, low operating costs, and high nitrogenous loading rates. However, since the partial nitrification-anammox (PN-anammox) process combines partial nitrification and anammox reactions within the same reactor, strict control of dissolved oxygen (DO) is essential. Additionally, assessing treatment performance through chemical measurement involves time lag, making it challenging to recover the biological process when issue arise, especially in the PN-anammox process, where strict DO control and the sensitivity of anammox bacteria to conditions and substrates demand timely intervention.

View Article and Find Full Text PDF

The ratio of nitrogen (N) to argon (Ar) in landfill gas was compared to the atmospheric gas ratio to quantify the balance between N generating (anaerobic ammonium oxidation, denitrification) and N consuming (nitrogen fixation) processes on three landfills undergoing in-situ stabilization. In the aerated landfills, as much as 22% of the extracted N could be explained by net denitrification, with coexisting aerobic and anaerobic domains fostering nitrification-dependent denitrification. Nitrogen fixation was also occasionally observed.

View Article and Find Full Text PDF

How biofilm and granular sludge cope with dissolved oxygen exposure in anammox process: Performance, bioaccumulation characteristics and bacterial evolution.

J Environ Manage

December 2024

Department of Environmental Science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan, 316022, PR China; Zhejiang Provincial Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316022, PR China. Electronic address:

In order to study the resistance mechanisms of biofilm and granular sludge to various dissolved oxygen (DO) exposures in anaerobic ammonium oxidation (anammox) process, a biofilm - granular sludge anammox reactor was established and operated. Experimental results showed that DO levels of ≤0.41 mg L hardly affected the total nitrogen removal efficiency (TNRE).

View Article and Find Full Text PDF

Contribution of the microbial community to operational stability in an anammox reactor: Neutral theory and functional redundancy perspectives.

Bioresour Technol

December 2024

School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea. Electronic address:

A comprehensive understanding of microbial assembly is essential for achieving stable performance in biological wastewater treatment. Nevertheless, few studies have quantified these phenomena in detail, particularly in anammox-based processes. This study integrated mathematical and microbial approaches to analyze a 330-day anammox reactor with stable nitrogen removal efficiency (97 - 99%) despite changes in the high nitrogen loading rate, nitrogen concentration, and hydraulic retention time.

View Article and Find Full Text PDF

Global Relative Importance of Denitrification and Anammox in Microbial Nitrogen Loss Across Terrestrial and Aquatic Ecosystems.

Adv Sci (Weinh)

December 2024

Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, P.R. China.

Denitrification and anaerobic ammonium oxidation (anammox) are the major microbial processes responsible for global nitrogen (N) loss. Yet, the relative contributions of denitrification and anammox to N loss across contrasting terrestrial and aquatic ecosystems worldwide remain unclear, hampering capacities to predict the human alterations in the global N cycle. Here, a global synthesis including 3240 observations from 199 published isotope pairing studies is conducted and finds that denitrification governs microbial N loss globally (79.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!