Introduction: The mining and tunneling industries are historically associated with hazardous exposures that result in significant occupational health concerns. Occupational respiratory exposures causing pneumoconiosis and silicosis are of great concern, silicosis being non-curable. This work demonstrates that compressed-air workers (CAWs) performing tunnel hyperbaric interventions (HIs) may be at risk for hazards related to bentonite exposure, increasing the likelihood of developing harmful illnesses including cancer. Bentonite dust inhalation may result in respiratory levels of silica exceeding acceptable industrial hygiene standards.

Methods: A qualitative observational exposure assessment was conducted on CAWs while they were performing their HI duties. This was followed by quantitative data collection using personal and area air sample techniques. The results were analyzed and interpreted using standard industrial hygiene principles and guidelines from NIOSH and OSHA.

Results: Our work suggests bentonite dust exposure may be an emerging particulate matter concern among CAWs in the tunneling industry. Aerosolized bentonite particles may have potential deleterious effects that include pneumoconiosis and silicosis. Silicosis can result in the development of pulmonary carcinoma.

Conclusions: The modern tunneling industry and required hyperbaric interventional tasks represent a potential public health and occupational concern for CAWs. This paper introduces the modern tunneling industry and the duties of CAWs, the hazardous environment in which they perform their duties, and describes the risks and potential harmful health effects associated with these hazardous exposures.

Download full-text PDF

Source

Publication Analysis

Top Keywords

bentonite dust
12
tunneling industry
12
tunnel hyperbaric
8
hyperbaric interventions
8
associated hazardous
8
hazardous exposures
8
pneumoconiosis silicosis
8
caws performing
8
industrial hygiene
8
concern caws
8

Similar Publications

In the first part of this publication, selected technological and strength properties of synthetic molding sand bound with sodium bentonite with the addition of a new lustrous carbon carrier (R, R, R, W, P, Z, P, P, S, ρ) were determined. The introduction of polyethylene as a substitute for hydrocarbon resin, and shungite as a replacement for coal dust, demonstrated the achievement of an optimal molding sand composition for practical use in casting technology. The sand containing a new lustrous carbon carrier (SH/PE) demonstrates the highest permeability and flowability.

View Article and Find Full Text PDF

This research focuses on the synthesis of novel low-cost granular sorbents based on bentonite clay of the Navbahor deposit, dust fraction of Angren brown coal, and agricultural wastes such as straw and sawdust to meet the internal needs of the Republic of Uzbekistan. The impact of the initial mixture ingredients on the structural and textural properties of bentonite-coal sorbents (BCSs) has been studied using X-ray diffraction, Raman spectroscopy, Fourier-transform infrared spectroscopy, optical microscopy, and nitrogen adsorption-desorption analysis. For determining the sorption capacity of BCSs, a standard model substance methylene blue (MB), was applied.

View Article and Find Full Text PDF

Valorizing industrial tobacco wastes within natural clays and chitosan nanocomposites for an ecofriendly insecticide.

Waste Manag

August 2023

University of Carthage, National Institute of Applied Sciences and Technology, EcoChimie Laboratory, Centre Urbain Nord BP 676, 1080 Tunis Cedex, Tunisia. Electronic address:

We report the engineering of insecticide films based on two mineral clays, montmorillonite and kaolinite, combined to chitosan and/or cellulose acetate originating from cigarette filter and subsequently impregnated with tobacco essential oil extracted from tobacco dust. Both binary composites, i.e.

View Article and Find Full Text PDF

The microbial‑induced carbonate precipitation (MICP), as an emerging biomineralization technology mediated by specific bacteria, has been a popular research focus for scientists and engineers through the previous two decades as an interdisciplinary approach. It provides cutting-edge solutions for various engineering problems emerging in the context of frequent and intense human activities. This paper is aimed at reviewing the fundaments and engineering applications of the MICP technology through existing studies, covering realistic need in geotechnical engineering, construction materials, hydraulic engineering, geological engineering, and environmental engineering.

View Article and Find Full Text PDF

Heterogeneous reaction of NO with feldspar, three clay minerals and Arizona Test Dust.

J Environ Sci (China)

August 2023

State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China. Electronic address:

Heterogeneous reaction of NO with mineral dust aerosol may play important roles in troposphere chemistry, and has been investigated by a number of laboratory studies. However, the influence of mineralogy on this reaction has not been well understood, and its impact on aerosol hygroscopicity is not yet clear. This work investigated heterogeneous reactions of NO (∼10 ppmv) with K-feldspar, illite, kaolinite, montmorillonite and Arizona Test Dust (ATD) at room temperature as a function of relative humidity (<1% to 80%) and reaction time (up to 24 hr).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!