Serotonin Induces Structural Plasticity of Both Extrinsic Modulating and Intrinsic Mediating Circuits In Vitro in Aplysia Californica.

Cell Rep

Department of Neuroscience, Columbia University, New York, NY 10027, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Kavli Institute for Brain Science, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA. Electronic address:

Published: September 2019

Long-term sensitization of the gill withdrawal reflex in Aplysia requires heterosynaptic, modulatory input that is mediated in part by the growth of new synaptic connections between sensory neurons and their follower cells (intrinsic mediating circuit). Whether modulatory interneurons (the extrinsic modulatory circuit) also display learning-related structural synaptic plasticity remains unknown. To test this idea, we added a bona fide serotonergic modulatory neuron, the metacerebral cell (MCC), to sensory-motor neuron co-cultures and examined the modulating presynaptic varicosities of MCCs before and after repeated pulses of serotonin (5-HT) that induced long-term facilitation (LTF). We observed robust growth of new serotonergic varicosities that were positive for serotonin and capable of synaptic recycling. Our findings demonstrate that, in addition to structural changes in the intrinsic mediating circuit, there are also significant learning-related structural changes in the extrinsic modulating circuit, and these changes might provide a cellular mechanism for savings and for spread of memory.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2019.08.016DOI Listing

Publication Analysis

Top Keywords

intrinsic mediating
12
extrinsic modulating
8
mediating circuit
8
learning-related structural
8
structural changes
8
serotonin induces
4
structural
4
induces structural
4
structural plasticity
4
plasticity extrinsic
4

Similar Publications

Biomimetic Confined Assembly of Plasmonic CuS from Electronic Waste for Rapid Photothermal Disinfection.

ACS Nano

January 2025

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

Photothermal disinfection (PTD) offers promising potential for water purification due to its sustainable and broad-spectrum bactericidal properties, although it is hindered by slow charge separation in photosensitizers. Herein, we present a plasma-mediated PTD technique utilizing an efficient localized heating effect induced by incident light at specific wavelengths for rapid bacterial inactivation. A metallic CuS photosensitizer, derived from electronic waste through a biomimetic transmembrane confined-assembled strategy, facilitates collective and coherent oscillation of free electrons around Cu atoms in the near-infrared range.

View Article and Find Full Text PDF

Corticocortical (CC) projections in the visual system facilitate hierarchical processing of sensory information. In addition to direct CC connections, indirect cortico-thalamo-cortical (CTC) pathways through the pulvinar nucleus of the thalamus can relay sensory signals and mediate cortical interactions according to behavioral demands. While the pulvinar connects extensively to the entire visual cortex, it is unknown whether transthalamic pathways link all cortical areas or whether they follow systematic organizational rules.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is mostly refractory to immunotherapy due to immunosuppression in the tumor microenvironment and cancer cell-intrinsic T cell tolerance mechanisms. PDAC is described as a "cold" tumor type with poor infiltration by T cells and factors leading to intratumoral T cell suppression have thus received less attention. Here, we identify a cancer cell-intrinsic mechanism that contributes to a T cell-resistant phenotype and describes potential combinatorial therapy.

View Article and Find Full Text PDF

Targeting the mevalonate pathway potentiates NUAK1 inhibition-induced immunogenic cell death and antitumor immunity.

Cell Rep Med

January 2025

Renji-Med-X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China; Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China. Electronic address:

The induction of immunogenic cell death (ICD) impedes tumor progression via both tumor cell-intrinsic and -extrinsic mechanisms, representing a robust therapeutic strategy. However, ICD-targeted therapy remains to be explored and optimized. Through kinome-wide CRISPR-Cas9 screen, NUAK family SNF1-like kinase 1 (NUAK1) is identified as a potential target.

View Article and Find Full Text PDF

The development of efficient photocatalysts inspired by natural photosynthesis has drawn considerable interest for sustainable hydrogen (H) production. Among the various strategies for enhancing H evolution, constructing step-scheme (S-scheme) heterojunctions has attracted extensive interest, thanks to their limited charge recombination and enhanced charge transport in comparison to the traditional photocatalytic systems. Herein, we report the engineering of a novel S-scheme heterojunction by integrating ultrathin ZnInS (ZIS) nanosheets with MOF-derived N-doped NiO porous microrods (ZIS/N-NiO) toward superior photocatalytic behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!