A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Koopman Mode Analysis of agent-based models of logistics processes. | LitMetric

Koopman Mode Analysis of agent-based models of logistics processes.

PLoS One

Aimdyn, Inc., Santa Barbara, CA, United States of America.

Published: March 2020

Modern logistics processes and systems can feature extremely complicated dynamics. Agent Based Modeling is emerging as a powerful modeling tool for design, analysis and control of such logistics systems. However, the complexity of the model itself can be overwhelming and mathematical meta-modeling tools are needed that aggregate information and enable fast and accurate decision making and control system design. Here we present Koopman Mode Analysis (KMA) as such a tool. KMA uncovers exponentially growing, decaying or oscillating collective patterns in dynamical data. We apply the methodology to two problems, both of which exhibit a bifurcation in dynamical behavior, but feature very different dynamics: Medical Treatment Facility (MTF) logistics and ship fueling (SF) logistics. The MTF problem features a transition between efficient operation at low casualty rates and inefficient operation beyond a critical casualty rate, while the SF problem features a transition between short mission life at low initial fuel levels and sustained mission beyond a critical initial fuel level. Both bifurcations are detected by analyzing the spectrum of the associated Koopman operator. Mathematical analysis is provided justifying the use of the Dynamic Mode Decomposition algorithm in punctuated linear decay dynamics that is featured in the SF problem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6738619PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0222023PLOS

Publication Analysis

Top Keywords

koopman mode
8
mode analysis
8
logistics processes
8
problem features
8
features transition
8
initial fuel
8
logistics
5
analysis
4
analysis agent-based
4
agent-based models
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!