Objective: It has long been assumed that paranoid ideation may stem from an aberrant limbic response to threatening stimuli. However, results from functional neuroimaging studies using negative emotional stimuli have failed to confirm this assumption. One of the potential reasons for the lack of effect is that study participants with psychosis may display aberrant brain responses to neutral material rather than to threatening stimuli. The authors conducted a functional neuroimaging meta-analysis to test this hypothesis.
Methods: A literature search was performed with PubMed, Google Scholar, and Embase to identify functional neuroimaging studies examining brain responses to neutral material in patients with psychosis. A total of 23 studies involving schizophrenia patients were retrieved. Using t-maps of peak coordinates to calculate effect sizes, a random-effects model meta-analysis was performed with the anisotropic effect-size version of Seed-based d Mapping software.
Results: In schizophrenia patients relative to healthy control subjects, increased activations were observed in the left and right amygdala and parahippocampus and the left putamen, hippocampus, and insula in response to neutral stimuli.
Conclusions: Given that several limbic regions were found to be more activated in schizophrenia patients than in control subjects, the results of this meta-analysis strongly suggest that these patients confer aberrant emotional significance to nonthreatening stimuli. In theory, this abnormal brain reactivity may fuel delusional thoughts. Studies are needed in individuals at risk of psychosis to determine whether aberrant limbic reactivity to neutral stimuli is an early neurofunctional marker of psychosis vulnerability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1176/appi.ajp.2019.19030247 | DOI Listing |
Sci Rep
December 2024
BAOBAB Unit, NeuroSpin center, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
Decoding states of consciousness from brain activity is a central challenge in neuroscience. Dynamic functional connectivity (dFC) allows the study of short-term temporal changes in functional connectivity (FC) between distributed brain areas. By clustering dFC matrices from resting-state fMRI, we previously described "brain patterns" that underlie different functional configurations of the brain at rest.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US.
The correlational structure of brain activity dynamics in the absence of stimuli or behavior is often taken to reveal intrinsic properties of neural function. To test the limits of this assumption, we analyzed peripheral contributions to resting state activity measured by fMRI in unanesthetized, chemically immobilized male rats that emulate human neuroimaging conditions. We find that perturbation of somatosensory input channels modifies correlation strengths that relate somatosensory areas both to one another and to higher-order brain regions, despite the absence of ostensible stimuli or movements.
View Article and Find Full Text PDFNat Commun
December 2024
Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
Resting-state functional connectivity (rsFC) has been essential to elucidate the intricacy of brain organization, further revealing clinical biomarkers of neurological disorders. Although functional magnetic resonance imaging (fMRI) remains a cornerstone in the field of rsFC recordings, its interpretation is often hindered by the convoluted physiological origin of the blood-oxygen-level-dependent (BOLD) contrast affected by multiple factors. Here, we capitalize on the unique concurrent multiparametric hemodynamic recordings of a hybrid magnetic resonance optoacoustic tomography platform to comprehensively characterize rsFC in female mice.
View Article and Find Full Text PDFTransl Psychiatry
December 2024
School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China.
Bipolar disorder (BD) is a neuropsychiatric disorder characterized by severe disturbance and fluctuation in mood. Dynamic functional connectivity (dFC) has the potential to more accurately capture the evolving processes of emotion and cognition in BD. Nevertheless, prior investigations of dFC typically centered on larger time scales, limiting the sensitivity to transient changes.
View Article and Find Full Text PDFNeurourol Urodyn
December 2024
Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
Introduction: Detrusor contractions can be classified as either volitional or involuntary. The latter are a hallmark of urge urinary incontinence. Understanding differences in neuroactivation associated with both types of contractions can help elucidate pathophysiology and therapeutic targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!