PFOS Modulates Interactive Epigenetic Regulation in First-Trimester Human Trophoblast Cell Line HTR-8/SV.

Chem Res Toxicol

Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy , Texas A&M Health Science Center , 312 REYN, MS 1114 , College Station, Texas 77843 , United States.

Published: October 2019

Organic compounds have been linked to adverse pregnancy complications. Perfluorooctanesulfonic acid (PFOS), a man-made fluorosurfactant and global pollutant, has been shown to induce oxidative stress in various cell types. Oxidative stress plays a key role in leading several placental diseases including preeclampsia (PE), gestational diabetes, spontaneous abortion, preterm labor, and intrauterine growth restriction. Recently, epigenetic regulation such as histone modifications, DNA methylation, and microRNAs (miRNAs), are shown to be associated with oxidative stress as well as pregnancy complications such as PE. However, whether PFOS exerts its detrimental effects in the placenta through epigenetics remains to be unveiled. Therefore, we aimed to investigate the effect of PFOS-induced reactive oxygen species (ROS) generation in first trimester human trophoblast cell line (HTR-8/SV) and whether epigenetic regulation is involved in this process. When treated with a range of PFOS doses at 24 and 48 h, even at 10 μM, it significantly increased the ROS production and decreased gene and protein expression, respectively, of the DNA methyltransferases DNMT1 ( < 0.001; < 0.05), DNMT3A ( < 0.001; < 0.05), and DNMT3B ( < 0.01; < 0.01) and the sirtuins, for example, SIRT1 ( < 0.001; < 0.001) and SIRT3 ( < 0.001; < 0.05), while reducing global DNA methylation ( < 0.01) and increasing protein lysine acetylation ( < 0.001) as compared to vehicle controls. Interestingly, PFOS (10 μM) significantly increased miR29-b ( < 0.01), which has been previously reported to be associated with PE. The observed epigenetic effects were shown to be dependent on the expression of miR-29b, as knockdown of miR-29b significantly alters the gene and protein expression of DNMT1, DNMT3A, DNMT3B, SIRT1, and SIRT3 and ROS production as well as global DNA methylation and protein acetylation. This study provides for the first time a novel insight into PFOS-induced ROS generation via regulation of sets of the interactive epigenetic circuit in the placenta, which may lead to pregnancy complications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrestox.9b00198DOI Listing

Publication Analysis

Top Keywords

epigenetic regulation
12
pregnancy complications
12
oxidative stress
12
dna methylation
12
0001 005
12
interactive epigenetic
8
human trophoblast
8
trophoblast cell
8
cell htr-8/sv
8
ros generation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!