A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Benefit of a hemilabile ligand in deoxygenation of fatty acids to 1-alkenes. | LitMetric

Benefit of a hemilabile ligand in deoxygenation of fatty acids to 1-alkenes.

Faraday Discuss

Department of Chemistry, University of Bergen, Allègaten 41, N-5007 Bergen, Norway.

Published: December 2019

One of the most important tasks for chemistry in our time is to contribute to sustainable chemical production. A green industrial process for linear α-olefins, the arguably most important class of petrochemical intermediates, from renewable resources would be a major contribution to this end. Plant oils are attractive renewable feedstocks for this purpose because their triglycerides can be hydrolyzed to fatty acids that contain valuable long-chain hydrocarbons (C16-C22). These hydrocarbons may, in turn, be converted to α-olefins by the deoxygenation of the fatty acids. For the most selective of these deoxygenation reactions, transition-metal catalyzed decarbonylative dehydration, the density functional theory (DFT) calculations have just started to offer valuable mechanistic insight, and the use of this insight in rational catalyst design has been facilitated by the arrival of the first well-defined precatalyst for this reaction, Pd(cinnamyl)Cl(DPEphos) (1). Here, we present DFT calculations showing how, in 1, the hemilability of DPEphos, a classical P-O-P diphosphine, contributes to a low overall barrier and high α-selectivity. DPEphos facilitates decarbonylation by first switching from bidentate to monodentate binding to create a coordination site for CO. The recoordination of the dangling phosphine displaces the Pd-bound CO, a co-product that must leave the reactor for the reaction to proceed, and the escaping CO is here modelled using a low pressure in the calculation of its thermochemical corrections. Finally, the role of the hemilabile ligand suggests that further improvements in the decarbonylative dehydration of fatty acids to α-olefins might be achieved by exploring new, potentially asymmetric, hemilabile ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9fd00037bDOI Listing

Publication Analysis

Top Keywords

fatty acids
16
hemilabile ligand
8
deoxygenation fatty
8
decarbonylative dehydration
8
dft calculations
8
benefit hemilabile
4
ligand deoxygenation
4
fatty
4
acids
4
acids 1-alkenes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!