Synthesis and Antimicrobial Studies of 4-[3-(3-Fluorophenyl)-4-formyl-1-pyrazol-1-yl]benzoic Acid and 4-[3-(4-Fluorophenyl)-4-formyl-1-pyrazol-1-yl]benzoic Acid as Potent Growth Inhibitors of Drug-Resistant Bacteria.

ACS Omega

Department of Chemistry and Physics, College of Science and Mathematics and Department of Biological Sciences, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States.

Published: September 2019

Microbial resistance to antibiotics is an urgent and worldwide concern. Several pyrazole-derived hydrazones were synthesized by using benign reaction conditions. Several of these molecules are potent growth inhibitors of drug-resistant strains of and with minimum inhibitory concentration values as low as 0.39 μg/mL. Furthermore, these molecules are nontoxic to human cells at high concentrations. Some of these molecules were tested for their ability to disrupt the bacterial membrane by using the SYTO-9/propidium iodide (BacLight) assay.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733178PMC
http://dx.doi.org/10.1021/acsomega.9b01967DOI Listing

Publication Analysis

Top Keywords

potent growth
8
growth inhibitors
8
inhibitors drug-resistant
8
synthesis antimicrobial
4
antimicrobial studies
4
studies 4-[3-3-fluorophenyl-4-formyl-1-pyrazol-1-yl]benzoic
4
4-[3-3-fluorophenyl-4-formyl-1-pyrazol-1-yl]benzoic acid
4
acid 4-[3-4-fluorophenyl-4-formyl-1-pyrazol-1-yl]benzoic
4
4-[3-4-fluorophenyl-4-formyl-1-pyrazol-1-yl]benzoic acid
4
acid potent
4

Similar Publications

Background/aim: Immune checkpoint blockade has achieved great success as a targeted immunotherapy for solid cancers. However, small molecules that inhibit programmed death 1/programmed death ligand 1 (PD-1/PD-L1) binding are still being developed and have several advantages, such as high bioavailability. Previously, we reported a novel PD-1/PD-L1-inhibiting small compound, SCL-1, which showed potent antitumor effects on PD-L1 tumors.

View Article and Find Full Text PDF

Sertaconazole, an Imidazole Antifungal Agent, Suppresses the Stemness of Breast Cancer Cells by Inhibiting Stat3 Signaling.

In Vivo

December 2024

Graduate Program for Bio-health/Innovative Drug Development using Subtropical Bio-Resources, Jeju National University, Jeju, Republic of Korea;

Background/aim: Breast cancer stem cells (BCSCs) are a subpopulation of tumor cells that play a role in therapeutic resistance. In this study, we demonstrated that sertaconazole, an antifungal agent, displayed a potent inhibition on cancer stem cells (CSCs) and investigated the mechanism of action involved in its anti-BCSC effect.

Materials And Methods: The effect of sertaconazole on BCSCs was investigated using a mammosphere formation assay, a colony formation assay, and a cell migration assay.

View Article and Find Full Text PDF

Background/aim: Preclinical studies were undertaken to investigate whether eribulin's known cytotoxic antimitotic effects are characterized by immunogenic cell death (ICD) as assessed by three established ICD biomarkers: extracellular released ATP, released HMGB1 and cell surface calreticulin.

Materials And Methods: Using BT-549, Hs578T and MCF-7 breast cancer cell lines, antiproliferative IC's of eribulin, five other microtubule targeting agents (MTAs; ER-076349, vinblastine, vinorelbine, paclitaxel, docetaxel) and three DNA damaging agents (DDAs; doxorubicin, cisplatin, oxaliplatin) were determined.

Results: Treatment of cells with 10×IC concentrations of all drugs in serum-free media resulted in time-dependent induction of cytotoxicity over DMSO controls.

View Article and Find Full Text PDF

Pulmonary fibrosis is excessive scarring of the lung tissues. Transforming growth factor-beta (TGF-β) has been implicated in pulmonary fibrosis due to its ability to induce the epithelial-to-mesenchymal transition (EMT) and promote epithelial cell migration. Cyclin-dependent kinase 8 (CDK8) can mediate the TGF-β signaling pathways and could function as an alternative therapeutic target for treating pulmonary fibrosis.

View Article and Find Full Text PDF

Malaria caused by Plasmodium parasites remains a large health burden. One approach to combat this disease involves vaccinating individuals with whole sporozoites that have been genetically modified to arrest their development at a specific stage in the liver by targeted gene deletion, resulting in a genetically attenuated parasite (GAP). Through a comprehensive phenotyping screen, we identified the hscb gene, encoding a putative iron-sulfur protein assembly chaperone, as crucial for liver stage development, making it a suitable candidate gene for GAP generation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!