Layer exchange growth of amorphous carbon (a-C) is a unique technique for fabricating high-quality multilayer graphene (MLG) on insulators at low temperatures. We investigated the effects of the a-C/Ni multilayer structure on the quality of MLG formed by Ni-induced layer exchange. The crystal quality and electrical conductivity of MLG improved dramatically as the number of a-C/Ni multilayers increased. A 600 °C-annealed sample in which 15 layers of 4-nm-thick a-C and 0.5-nm-thick Ni were laminated recorded an electrical conductivity of 1430 S/cm. This value is close to that of highly oriented pyrolytic graphite synthesized at approximately 3000 °C. This improvement is likely related to the bond weakening in a-C due to the screening effect of Ni. We expect that these results will contribute to low-temperature synthesis of MLG using a solid-phase reaction with metals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733173PMC
http://dx.doi.org/10.1021/acsomega.9b01708DOI Listing

Publication Analysis

Top Keywords

layer exchange
12
ni-induced layer
8
multilayer graphene
8
electrical conductivity
8
impact amorphous-c/ni
4
amorphous-c/ni multilayers
4
multilayers ni-induced
4
exchange multilayer
4
graphene insulators
4
insulators layer
4

Similar Publications

Micronutrient Seed Coatings of Layered Double Hydroxides Overcome Seedling Toxicity and Improve Micronutrient Uptake in Comparison with Soluble Micronutrient Coatings.

J Agric Food Chem

January 2025

Department of Earth and Environmental Science, Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, B3001 Heverlee, Belgium.

Zinc (Zn), boron (B), and molybdenum (Mo) are micronutrients, essential to crops, which can be efficiently applied to crops via seed coatings. However, fast micronutrient release from soluble seed coatings brings seedling toxicity risks. Hence, this study developed novel Zn-B-Mo slow-release seed coating compounds, i.

View Article and Find Full Text PDF

The development of a newly fabricated ion-selective electrode (ISE) solid-contacted type for the determination of prucalopride succinate represents a significant advancement in analytical chemistry, particularly in the context of green chemistry principles. The optimization process involved numerous trials to ensure the selection of a cation exchanger and ionophore that offer high sensitivity and selectivity for prucalopride succinate. Through these optimization trials, sodium tetrakis was identified as the most suitable cation exchanger, while calix [8] arene demonstrated the highest affinity towards prucalopride succinate as the ionophore.

View Article and Find Full Text PDF

Among hornbill birds, the critically endangered helmeted hornbill (Rhinoplax vigil) is notable for its casque (a bulbous beak protrusion) being filled with trabeculae and fronted by a very thick keratin layer. Casque function is debated but appears central to aerial jousting, where birds (typically males) collide casques at high speeds in a mid-flight display that is audible for more than 100 m. We characterized the structural relationship between the skull and casque anatomy using X-ray microtomography and quantitative trabecular network analysis to examine how the casque sustains extreme impact.

View Article and Find Full Text PDF

Context: Exploration for renewable and environmentally friendly energy sources has become a major challenge to overcome the depletion of fossil fuels and their environmental hazards. Therefore, solar cell technology, as an alternative solution, has attracted the interest of many researchers. In the present work, the CsXInBr (X = Cu or Ag) compounds as lead-free halide perovskites have been studied due to their direct energy gap in the range of solar energy, thermodynamic stability, low effective mass of electrons, and high absorption coefficient.

View Article and Find Full Text PDF

Artificial heterostructures are often realized by stacking different materials to present new emerging properties that are not exhibited by their individual constituents. In this work, non-layered two-dimensional α-MnSe nanosheets were transferred onto LaMnO (LMO) films to obtain a multifunctional heterostructure. The high crystal quality of the MnSe/LMO heterostructure was revealed by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!