We describe the protocol, design, and methodology of the Prediction, Risk, and Evaluation of Major Adverse Cardiac Events (PRE-MACE) study as a multicomponent remote patient monitoring in cardiology. Using biosensor, biomarkers, and patient-reported outcomes in participants with stable ischemic heart disease, the PRE-MACE study is designed to measure cross-sectional correlations and establish the ability of remote monitoring to predict major adverse cardiovascular event (MACE) biomarkers and incident MACE at baseline and 12-month follow-up. It will further assess the adherence and cost-effectiveness of remote monitoring and blood sampling over the initial months. Despite medication and lifestyle changes, patients with cardiovascular disease can experience MACE due to undertreatment, poor adherence, or failure to recognize clinical or biochemical changes that presage MACE. Identifying patients using remote monitoring to detect MACE forerunners has potential to improve outcomes, avoid MACE, and reduce resource utilization. Data collection will include: (1) continuous remote monitoring using wearable biosensors; (2) biomarker measurements using plasma and at-home micro-sampling blood collection; and (3) patient-reported outcomes to monitor perceived stress, anxiety, depression, and health-related quality of life. Two hundred participants will be followed for 90 days with a subset ( = 80) monitored for 180 days. All participants will be followed up for MACE at 12 months.The PRE-MACE study will utilize remote monitoring with biosensors, biomarkers, and patient-reported outcomes to identify intermediate biomarkers of MACE in patients with stable ischemic heart disease. If shown to be effective, this intervention can be utilized between health visits to predict MACE and reduce financial impact of MACE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722086PMC
http://dx.doi.org/10.1038/s41746-019-0145-6DOI Listing

Publication Analysis

Top Keywords

remote monitoring
20
pre-mace study
12
patient-reported outcomes
12
mace
10
remote patient
8
patient monitoring
8
major adverse
8
biomarkers patient-reported
8
stable ischemic
8
ischemic heart
8

Similar Publications

The superposition of heavy metals (HMs) from multiple anthropogenic sources in geochemical anomaly areas makes it difficult to discriminate prime sources in atmospheric HMs. This study utilized a combination of microscopic features, positive matrix factorisation, and Pb isotope fingerprints to trace the main sources of HMs bound to total suspended particulates (TSP) at a pollution site (Msoshui: MS) and control site (Lushan: LS) in northwestern Guizhou. The results reveal that the concentrations of Cd, Pb, Cr, As, Cu, Ni, and Zn in the TSP of LS are 3.

View Article and Find Full Text PDF

Enhanced CH emissions from global wildfires likely due to undetected small fires.

Nat Commun

January 2025

Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.

Monitoring methane (CH) emissions from terrestrial ecosystems is essential for assessing the relative contributions of natural and anthropogenic factors leading to climate change and shaping global climate goals. Fires are a significant source of atmospheric CH, with the increasing frequency of megafires amplifying their impact. Global fire emissions exhibit large spatiotemporal variations, making the magnitude and dynamics difficult to characterize accurately.

View Article and Find Full Text PDF

Thermoelectric porous laser-induced graphene-based strain-temperature decoupling and self-powered sensing.

Nat Commun

January 2025

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.

Despite rapid developments of wearable self-powered sensors, it is still elusive to decouple the simultaneously applied multiple input signals. Herein, we report the design and demonstration of stretchable thermoelectric porous graphene foam-based materials via facile laser scribing for self-powered decoupled strain and temperature sensing. The resulting sensor can accurately detect temperature with a resolution of 0.

View Article and Find Full Text PDF

Introduction: SLE is a chronic autoimmune disease that results in sustained hyperactivation of innate and adaptive immune cells and widespread inflammatory damage. Regular exercise reduces SLE symptoms including fatigue and joint pain and improves patient quality of life. However, most individuals with SLE are not sufficiently active to achieve these benefits, and guidance on the optimal approach to exercise is limited.

View Article and Find Full Text PDF

Digital Health for Asthma Management: Electronic Medication Monitoring for Adherence as a Case Example.

J Allergy Clin Immunol Pract

January 2025

Breathing Institute, Children's Hospital Colorado, Department of Pediatrics, Pediatric Pulmonary and Sleep Medicine Section, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO. Electronic address:

Digital health is an umbrella term for components of healthcare utilizing computer platforms, software, connectivity and sensors to augment the recording, documentation and communication of clinical information. The functions of digital health may be viewed in three domains: 1) the repository for patient information, 2) monitoring devices and 3) communication tools. Monitoring devices have provided robust information as diagnostic and prognostic tools in office and hospital settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!