Safety and efficacy of cyclooxygenase-2 inhibition for treatment of primary hypertrophic osteoarthropathy: A single-arm intervention trial.

J Orthop Translat

Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.

Published: July 2019

AI Article Synopsis

  • Primary hypertrophic osteoarthropathy (PHO) is a rare disease linked to genetic mutations that lead to increased levels of prostaglandin E2 (PGE2), which affects joints, bones, and skin.
  • A study involving patients treated with the COX-2 inhibitor etoricoxib showed significant improvements in symptoms like joint swelling and pachydermia, with most patients experiencing relief.
  • The treatment led to a substantial decrease in PGE2 levels without severe side effects; however, responses varied between the different genetic subtypes of PHO.

Article Abstract

Background: Primary hypertrophic osteoarthropathy (PHO) is a rare disease involving joint, bone and skin. Two underlying genes responsible for this disease-hydroxyprostaglandin dehydrogenase () and solute carrier organic anion transporter family, member 2A1 ()-are both associated with aberrant accumulation of prostaglandin E2 (PGE2). Cyclooxygenase-2 (COX-2) is a key enzyme in PGE2 synthesis. This study was intended to evaluate the safety and efficacy of COX-2 inhibitor in the treatment of PHO.

Methods: We recruited patients presenting to Peking Union Medical Hospital between January 2009 and December 2016 who were diagnosed with PHO. Participants were given the COX-2 inhibitor etoricoxib (60 mg once daily) and followed up for 9 months. Gene analysis was performed at baseline. The following data were collected at baseline and during treatment: visual analogue score (VAS), volume of the distal middle finger (VDMF), knee joint circumference (KJC), serum and urinary levels of prostaglandin E2 (PGE2) and PGE metabolite (PGE-M) and serum levels of inflammatory markers.

Results: A total of 27 patients were recruited, including seven patients with PHO type I (PHOAR1) carrying gene mutations and 20 patients with PHO type II (PHOAR2) carrying gene mutations. After treatment with etoricoxib, the majority of patients experienced resolution of symptoms including pachydermia (60.9%), joint swelling (100%), digital clubbing (74.1%) and hyperhidrosis (55.0%). In both the PHO subtypes, serum and urinary levels of PGE2 were elevated at baseline and declined sharply upon treatment. For PHOAR1 patients, serum and urinary PGE-M levels were relatively low and demonstrated minimal response to COX-2 inhibition. Among PHOAR2 patients, mean serum and urinary levels of PGE-M presented at a high level at baseline and were normalized after 3 months of treatment. No severe adverse effects were reported during the study period.

Conclusions: We found COX-2 inhibitor to be safe and effective for the treatment of PHO in our cohort.

The Translational Potential Of This Article: The underlying genes responsible for PHO suggest COX inhibitor as potential therapy, and our study demonstrates the efficacy and safety of this treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718875PMC
http://dx.doi.org/10.1016/j.jot.2018.10.001DOI Listing

Publication Analysis

Top Keywords

serum urinary
16
cox-2 inhibitor
12
urinary levels
12
safety efficacy
8
treatment
8
primary hypertrophic
8
hypertrophic osteoarthropathy
8
underlying genes
8
genes responsible
8
prostaglandin pge2
8

Similar Publications

Do SGLT2 Inhibitors Protect the Kidneys? An Alternative Explanation.

Endocr Metab Immune Disord Drug Targets

January 2025

Sheba Medical Center, Institute of Endocrinology, Tel-Hashomer, Israel.

SGLT2 inhibitors are a family of drugs that were developed to treat diabetes mellitus. In randomized controlled trials, SGLT2 inhibitors seem to prevent kidney deterioration in patients with nephropathies, both diabetic and non-diabetic. However, in contrast to biochemical/physiological results (proteinuria and serum creatinine levels) that improve in all studies, the clinical results (all-cause mortality, cardiovascular death, need for dialysis, or renal transplant) do not consistently improve.

View Article and Find Full Text PDF

An 11-year-old girl with quiescent ulcerative colitis had sustained elevation of liver enzymes. Although she had no clinical symptoms suggestive of Wilson's disease, such as Kayser-Fleischer rings, laboratory data showed decreased serum copper and ceruloplasmin levels and increased urinary copper excretion. Genetic testing showed pathogenic variants in allele 1: c.

View Article and Find Full Text PDF

Premature ovarian insufficiency (POI) is poorly understood, with causes identified in only 25% of cases. Emerging evidence suggests links between trace elements (TEs) and POI. This study is the first to compare concentrations of manganese (Mn), copper (Cu), zinc (Zn), selenium (Se), molybdenum (Mo), arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) across urine, serum, and whole blood in women with POI compared to healthy controls (HC), aiming to explore their distribution and potential associations with POI.

View Article and Find Full Text PDF

Regulatory role of the mTOR signaling pathway in autophagy and mesangial proliferation in IgA nephropathy.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011.

Objectives: IgA nephropathy (IgAN) is the most common primary glomerular disease in China, but its pathogenesis remains unclear. This study aims to explore the regulatory role of the mammalian target of rapamycin (mTOR) signaling pathway in autophagy and mesangial proliferation during renal injury in IgA.

Methods: The activity of mTOR and autophagy was evaluated in kidney samples from IgAN patients and in an IgAN mouse model induced by oral bovine serum albumin and carbon tetrachloride (CCl4) injection.

View Article and Find Full Text PDF

Background: Hyperuricemia (HUA) is a condition characterized by excessive uric acid production and/or inadequate uric acid excretion due to abnormal purine metabolism in the human body. Uric acid deposits resulting from HUA can lead to complications such as renal damage. Currently, drugs used to treat HUA lack specificity and often come with specific toxic side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!