A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cause-and-Effect Analysis as a Tool To Improve the Reproducibility of Nanobioassays: Four Case Studies. | LitMetric

Cause-and-Effect Analysis as a Tool To Improve the Reproducibility of Nanobioassays: Four Case Studies.

Chem Res Toxicol

Particles-Biology Interactions Laboratory, Empa, Swiss Federal Laboratories for Material Science and Technology, CH-9014 St. Gallen, Switzerland.

Published: May 2020

One of the challenges in using data to understand the potential risks of engineered nanomaterials (ENMs) is that results often differ or are even contradictory among studies. While it is recognized that numerous factors can influence results produced by nanobioassays, there has not yet been a consistently used conceptual framework to identify key sources of variability in these assays. In this paper, we use cause-and-effect analysis to systematically describe sources of variability in four key nanobioassays: the 2',7'-dichlorofluorescein assay, an enzyme-linked immunosorbent assay for measuring interleukin-8, a flow cytometry assay (Annexin V/propidium iodide), and the Comet assay. These assays measure end points that can occur in cells impacted by ENMs through oxidative stress, a principle mechanism for ENM toxicity. The results from this analysis identify control measurements to test for potential artifacts or biases that could occur during conduct of these assays with ENMs. Cause-and-effect analysis also reveals additional measurements that could be performed either in preliminary experiments or each time the assay is run to increase confidence in the assay results and their reproducibility within and among laboratories. The approach applied here with these four assays can be used to support the development of a broad range of nanobioassays.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrestox.9b00165DOI Listing

Publication Analysis

Top Keywords

cause-and-effect analysis
12
sources variability
8
assay
6
analysis tool
4
tool improve
4
improve reproducibility
4
nanobioassays
4
reproducibility nanobioassays
4
nanobioassays case
4
case studies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!