We transformed the hydrophilic metal-organic framework (MOF) UiO-67 into hydrophobic UiO-67-Rs (R=alkyl) by introducing alkyl chains into organic linkers, which not only protected hydrophilic Zr O clusters to make the MOF interspace superoleophilic, but also led to a rough crystal surface beneficial for superhydrophobicity. The UiO-67-Rs displayed high acid, base, and water stability, and long alkyl chains offered better hydrophobicity. Good hydrophobicity/oleophilicity were also possible with mixed-ligand MOFs containing metal-binding ligands. Thus, a (super)hydrophobic MOF catalyst loaded with Pd centers efficiently catalyzed Sonogashira reactions in water at ambient temperature. Studies of the hydrophobic effects of the coordination interspace and the outer surface suggest a simple de novo strategy for the synthesis of superhydrophobic MOFs that combine surface roughness and low surface energy. Such MOFs have potential for environmentally friendly catalysis and water purification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201909912 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu 300093, Taiwan.
Three new bithiophene imide (BTI)-based organic small molecules, (), (), and (), with varied alkyl side chains, were developed and employed as self-assembled monolayers (SAMs) applied to NiOx films in tin perovskite solar cells (TPSCs). The NiOx layer has the effect of modifying the hydrophilicity and the surface roughness of ITO for SAM to uniformly deposit on it. The side chains of the SAM molecules play a vital role in the formation of a high-quality perovskite layer in TPSCs.
View Article and Find Full Text PDFAnal Chem
December 2024
Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
The surge of lateral flow immunoassays (LFAs) stimulates researchers to explore the novel vibrant aggregation-induced emission luminogen (AIEgen)-doped nanoparticles to improve the accuracy and reliability of LFAs. However, the loading amount of AIEgens currently used for the LFA in microspheres is limited due to their symmetrical large conjugated skeleton structure, which significantly reduces the fluorescence brightness of the signal reporter in the LFA. Herein, an ionic AIEgens with a donor-acceptor type was developed as the signal reporter of the LFA for C-reactive protein (CRP).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Ghent University: Universiteit Gent, Department of Organic and Macromolecular Chemistry, Krijgslaan 281 S4, 9000, Ghent, BELGIUM.
Recycling thermosetting materials presents itself as a major challenge in achieving sustainable material use. Dynamic covalent cross-linking of polymers has emerged as a viable solution that can combine the structural integrity of thermosetting materials with the (re-)processability of thermoplastics. Thioether linkages between polymer chains are quite common, and their use dates back to the vulcanization of rubbers.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Department of Chemistry, Eszterházy Károly Catholic University, Leányka utca 12, H-3300 Eger, Hungary.
In this work, we carry out a systematic computer simulation investigation of the single particle dynamics at the free surface of imidazolium-based room temperature ionic liquids by applying intrinsic surface analysis. Besides assessing the effect of the potential model and temperature, we focus in particular on the effect of changing the anion type, and, hence, their shape and size. Further, we also address the role of the length of the cation alkyl chains, known to protrude into the vapor phase, on the surface dynamics of the ions.
View Article and Find Full Text PDFSmall
December 2024
Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
Cellulose nanocrystals (CNCs) are known to self-assemble into a left-handed chiral nematic lyotropic liquid crystalline phase in water. When captured in the solid state, this structure can impart films with photonic properties that make them promising candidates in photonics, sensing, security, and other areas. Unfortunately, the intrinsic hydrophilicity of CNCs renders these iridescent films susceptible to moisture, thereby limiting their practicality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!