Atmospheric new particle formation (NPF) is the process by which atmospheric trace gases such as sulfuric acid, ammonia, and amines cluster and grow into climatically relevant particles. The mechanism by which these particles form and grow has remained unclear, in large part due to difficulties in obtaining molecular-level information about the clusters as they grow. Mass spectrometry-based methods using electrospray ionization (ESI) as a cluster source have shed light on this process, but the produced cluster distributions have not been rigorously validated against experiments performed in atmospheric conditions. Ionic clusters are produced by ESI of solutions containing the amine and bisulfate or by spraying a sulfuric acid solution and introducing trace amounts of amine gas into the ESI environment. The amine content of clusters can be altered by increasing the amount of amine introduced into the ESI environment, and certain cluster compositions can only be made by the vapor exchange method. Both approaches are found to yield clusters with the same structures. Aminium bisulfate cluster distributions produced in a controlled and isolated ESI environment can be optimized to closely resemble those observed by chemical ionization in the CLOUD chamber at CERN. These studies indicate that clusters generated by ESI are also observed in traditional atmospheric measurements, which puts ESI mass spectrometry-based studies on firmer footing and broadens the scope of traditional mass spectrometry experiments that may be applied to NPF.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13361-019-02322-3DOI Listing

Publication Analysis

Top Keywords

esi environment
12
atmospheric particle
8
particle formation
8
sulfuric acid
8
mass spectrometry-based
8
cluster distributions
8
esi
7
clusters
6
atmospheric
5
cluster
5

Similar Publications

The outer mitochondrial membrane protein known as mitoNEET was discovered when it was labeled by a photoaffinity derivative of the anti-diabetes medication, pioglitazone. The biological role for mitoNEET and its specific mechanism for achieving this remains an active subject for research. There is accumulating evidence suggesting that mitoNEET could be a component of mitochondrial FeS cofactor biogenesis.

View Article and Find Full Text PDF

is the main pathogen of peanut pod rot in China. To investigate the type of toxin and its pathogenic mechanism, a macrolide, brefeldin A, was isolated. The structure of the compound was identified by 1D and 2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization-mass spectrometry (HR-ESI-MS).

View Article and Find Full Text PDF

To optimize the utilization of the sea star , which has demonstrated potential pharmaceutical properties in Chinese folk medicine, ten glycosides of polyhydroxy steroids, pectiniferosides A-J (-), were isolated and characterized. These compounds possess 3β, 6α, 8, 15α (or β), 16β-pentahydroxycholestane aglycones with sulfated and (or) methylated monosaccharides. The chemical structures of - were determined using NMR spectroscopy and HR-ESI-MS.

View Article and Find Full Text PDF

In this study, metagenomic analysis was employed to investigate the bacterial communities in the Muan tidal mudflat of the Republic of Korea. We used metagenomic analysis to identify the microbial community in tidal soil dominated by Proteobacteria. From this environment, the bacterial strain, sp.

View Article and Find Full Text PDF

Trimethoprim (TMP) and sulfamethoxazole (SMX) are bacteriostatic agents, which are co-administered to patients during infection treatment due to their synergetic effects. Once consumed, TMP and SMX end up in wastewater and are directed to municipal wastewater treatment plants (WWTPs) which fail to remove these contaminants from municipal wastewater. The discharge of WWTP effluents containing antibiotics in the environment is a major concern for public health as it contributes to the spread of antimicrobial resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!