Arbuscular mycorrhizal fungi (AMF) play a central role in rhizosphere functioning as they interact with both plants and soil microbial communities. The conditions in which AMF modify plant physiology and microbial communities in the rhizosphere are still poorly understood. In the present study, four different plant species, (clover, alfalfa, ryegrass, tall fescue) were cultivated in either sterilized (γ ray) or non-sterilized soil and either inoculated with a commercial AMF (Glomus LPA Val 1.) or not. After 20 weeks of cultivation, the mycorrhizal rate and shoot and root biomasses were measured. The abundance and composition of bacteria, archaea, and fungi were analyzed, respectively, by quantitative PCR (qPCR) and fingerprinting techniques. Whilst sterilization did not change the AMF capacity to modify plant biomass, significant changes in microbial communities were observed, depending on the taxon and the associated plant. AMF inoculation decreases both bacterial and archaeal abundance and diversity, with a greatest extent in sterilized samples. These results also show that AMF exert different selections on soil microbial communities according to the plant species they are associated with. This study suggests that the initial abundance and diversity of rhizosphere microbial communities should be considered when introducing AMF to cultures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00572-019-00914-1 | DOI Listing |
PLoS One
January 2025
Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States of America.
Municipal solid waste (MSW) landfills represent underexplored microbial ecosystems. Landfills contain variable amounts of antibiotic and construction and demolition (C&D) wastes, which have the potential to alter microbial metabolism due to biocidal or redox active components, and these effects are largely underexplored. To circumvent the challenge of MSW heterogeneity, we conducted a 65-day time series study on simulated MSW microcosms to assess microbiome changes using 16S rRNA sequencing in response to 1) Fe(OH)3 and 2) Na2SO4 to represent redox active components of C&D waste as well as 3) antibiotics.
View Article and Find Full Text PDFJ Infect Dis
January 2025
Department of Medicine, University of Washington, Seattle, WA, USA.
Background: The association between bacterial vaginosis (BV) and increased HIV acquisition risk may be related to concentrations of HIV-susceptible immune cells in the cervix.
Methods: Participants (31 with BV and 30 with normal microbiota) underwent cervical biopsy at a single visit. Immune cells were quantified and sorted using flow cytometry (N=55), localization assessed by immunofluorescence (N=16), and function determined by bulk RNA sequencing (RNA-seq) of live CD45+ cells (N=21).
Ann Rheum Dis
January 2025
Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA. Electronic address:
Objectives: This study aims to elucidate the microbial signatures associated with autoimmune diseases, particularly systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), compared with colorectal cancer (CRC), to identify unique biomarkers and shared microbial mechanisms that could inform specific treatment protocols.
Methods: We analysed metagenomic datasets from patient cohorts with six autoimmune conditions-SLE, IBD, multiple sclerosis, myasthenia gravis, Graves' disease and ankylosing spondylitis-contrasting these with CRC metagenomes to delineate disease-specific microbial profiles. The study focused on identifying predictive biomarkers from species profiles and functional genes, integrating protein-protein interaction analyses to explore effector-like proteins and their targets in key signalling pathways.
Ann Rheum Dis
January 2025
Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
The increasing prevalence of autoimmune and immune-mediated diseases (AIMDs) underscores the need to understand environmental factors that contribute to their pathogenesis, with the microbiome emerging as a key player. Despite significant advancements in understanding how the microbiome influences physiological and inflammatory responses, translating these findings into clinical practice remains challenging. This viewpoint reviews the progress and obstacles in microbiome research related to AIMDs, examining molecular techniques that enhance our understanding of microbial contributions to disease.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
Aspartate (Asp) metabolism-mediated antioxidant functions have important implications for neonatal growth and intestinal health; however, the antioxidant mechanisms through which Asp regulates the gut microbiota and influences RIP activation remain elusive. This study reports that chronic oxidative stress disrupts gut microbiota and metabolite balance and that such imbalance is intricately tied to the perturbation of Asp metabolism. Under normal conditions, in vivo and in vitro studies reveal that exogenous Asp improves intestinal health by regulating epithelial cell proliferation, nutrient uptake, and apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!