Purpose: Molecular mechanisms of response to hypomethylating agents in patients with myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML) still remain largely unknown. Therefore, the effects of 5-Azacytidine (Aza) on clonal architecture and DNA methylation were investigated in this study.
Methods: Using next-generation sequencing (NGS), 30 myeloid leukemia-associated genes were analyzed in 15 MDS/CMML patients with excellent response to Aza. Effects on methylation levels were analyzed by quantitative methylation analysis using pyrosequencing for the global methylation marker LINE-1 in patients and myeloid cell lines. Various myeloid cell lines and a healthy cohort were screened for methylation levels in 23 genes. Selected targets were verified on the MDS/CMML cohort.
Results: The study presented here showed a stable variant allele frequency and stable global methylation levels in responding patients. A significant demethylation of EZH2 and NOTCH1 was revealed in patients with Aza response.
Conclusions: A response to Aza is not associated with eradication of malignant clones, but rather with a stabilization of the clonal architecture. We suggest changes in CpG methylation levels of EZH2 and NOTCH1 as potential targets of epigenetic response to Aza treatment which may also serve as useful biomarkers after clinical evaluation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00432-019-03016-9 | DOI Listing |
R Soc Open Sci
January 2025
Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan 410013, People's Republic of China.
DNA mixtures containing semen and vaginal fluid are common biological samples in forensic analysis. However, the analysis of semen-vaginal fluid mixtures remains challenging. In this study, to solve these problems, it is proposed to combine semen-specific CpG sites and closely related microhaplotype sites to form a new composite genetic marker (semen-specific methylation-microhaplotype).
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Pharmacy, Gansu Provincial Hospital, Lanzhou, China.
Background: N6-methyladenosine (mA)-mediated epitranscriptomic pathway has been shown to contribute to chemoresistance and radioresistance. Our previous work confirmed the defense of lycorine against tamoxifen resistance of breast cancer (BC) through targeting HOXD antisense growth-associated long non-coding RNA (HAGLR). Whereas, the precise regulation among them remains to be elucidated.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Radiation Oncology, The Second Hospital of Lanzhou University, Lanzhou, China.
Background: Within the realm of primary brain tumors, specifically glioblastoma (GBM), presents a notable obstacle due to their unfavorable prognosis and differing median survival rates contingent upon tumor grade and subtype. Despite a plethora of research connecting cardiotrophin-1 (CTF1) modifications to a range of illnesses, its correlation with glioma remains uncertain. This study investigated the clinical value of CTF1 in glioma and its potential as a biomarker of the disease.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Orthopedics, Beijing LongFu Hospital, Beijing, China.
Objective: We aimed to investigate the effects of Tongluo Zhitong formula on synovial fibroblast proliferation in human knee osteoarthritis (KOA).
Methods: Discarded synovial tissue collected from patients undergoing total knee arthroplasty at our hospital was digested with type I collagenase. Primary culture was performed on three to four generations of fibroblasts, which were treated with high, medium, and low concentrations of Tongluo Zhitong formula.
ACS Appl Mater Interfaces
January 2025
Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64053, Pau, France.
The photopolymerization-induced microphase separation (photo-PIMS) process involving a reactive polymer block was implemented to fabricate nanostructured quasi-solid polymer electrolytes (QSPEs) for use in lithium metal batteries (LMBs). This innovative one-pot fabrication enhances interfacial properties in LMBs by enabling nanostructuring of QSPE directly onto the electrodes. This process also allows for customization of QSPE structural dimensions by tweaking the architecture and molar mass of poly[(oligo ethylene glycol) methyl ether methacrylate--styrene] (P(OEGMA--S)) macromolecular chain transfer agent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!