The population genetics of structural variants in grapevine domestication.

Nat Plants

Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, USA.

Published: September 2019

Structural variants (SVs) are a largely unexplored feature of plant genomes. Little is known about the type and size of SVs, their distribution among individuals and, especially, their population dynamics. Understanding these dynamics is critical for understanding both the contributions of SVs to phenotypes and the likelihood of identifying them as causal genetic variants in genome-wide associations. Here, we identify SVs and study their evolutionary genomics in clonally propagated grapevine cultivars and their outcrossing wild progenitors. To catalogue SVs, we assembled the highly heterozygous Chardonnay genome, for which one in seven genes is hemizygous based on SVs. Using an integrative comparison between Chardonnay and Cabernet Sauvignon genomes by whole-genome, long-read and short-read alignment, we extended SV detection to population samples. We found that strong purifying selection acts against SVs but particularly against inversion and translocation events. SVs nonetheless accrue as recessive heterozygotes in clonally propagated lineages. They also define outlier regions of genomic divergence between wild and cultivated grapevines, suggesting roles in domestication. Outlier regions include the sex-determination region and the berry colour locus, where independent large, complex inversions have driven convergent phenotypic evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41477-019-0507-8DOI Listing

Publication Analysis

Top Keywords

structural variants
8
svs
8
clonally propagated
8
outlier regions
8
population genetics
4
genetics structural
4
variants grapevine
4
grapevine domestication
4
domestication structural
4
variants svs
4

Similar Publications

To regain infectivity, Trypanosoma brucei, the pathogen causing Human and Animal African trypanosomiasis, undergoes a complex developmental program within the tsetse fly known as metacyclogenesis. RNA-binding protein 6 (RBP6) is a potent orchestrator of this process, however, an understanding of its functionally important domains and their mutational constraints is lacking. Here, we perform deep mutational scanning of the entire RBP6 primary structure.

View Article and Find Full Text PDF

Backgroud: The ALMS1 gene is predominantly localized to cilia, particularly in the photoreceptor cells of the retina, auditory neurons, kidneys, and other ciliated structures. Pathogenic mutations in this gene cause Alstrom syndrome (AS), which is characterized by dilated cardiomyopathy, retinal degeneration, neurodeafness, and centripetal obesity. However, the genetic mechanism of the ALMS1 gene remains unclear.

View Article and Find Full Text PDF

Background: The lateral pterygoid muscle (LPM) is crucial for masticatory function but exhibits significant anatomical variability that challenges traditional anatomical views. Advanced imaging techniques have revealed these variations, necessitating a reevaluation of the LPM's structure.

Purpose: To categorize variations in the number of LPM heads and their relationship with the maxillary artery, aiming to improve the understanding of orofacial anatomy and move beyond simplified anatomical models.

View Article and Find Full Text PDF

Overexpression, Biophysical and Functional Characterization of a Recombinant FGF21 (rFGF21).

Biophys Rep (N Y)

January 2025

Department of Chemistry and Biochemistry, Fulbright College of Art and Sciences, University of Arkansas, Fayetteville, AR 72701, USA. Electronic address:

Fibroblast Growth Factor 21 (FGF21) is an endocrine FGF that plays a vital role in regulating essential metabolic pathways. FGF21 increases glucose uptake by cells, promotes fatty acid oxidation, reduces blood glucose levels, and alleviates metabolic diseases. However, detailed studies on its stability and biophysical characteristics have not been reported.

View Article and Find Full Text PDF

Computational design and improvement of a broad influenza virus HA stem targeting antibody.

Structure

January 2025

Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China. Electronic address:

Broadly neutralizing antibodies (nAbs) are vital therapeutic tools to counteract both pandemic and seasonal influenza threats. Traditional strategies for optimizing nAbs generally rely on labor-intensive, high-throughput mutagenesis screens. Here, we present an innovative structure-based design framework for the optimization of nAbs, which integrates epitope-paratope analysis, computational modeling, and rational design approaches, complemented by comprehensive experimental assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!