Tropilaelaps mercedesae parasitism can cause Apis mellifera colony mortality in Asia. Here, we report for the first time that tropilaelaps mites feed on both pre- and post-capped stages of honey bees. Feeding on pre-capped brood may extend their survival outside capped brood cells, especially in areas where brood production is year-round. In this study, we examined the types of injury inflicted by tropilaelaps mites on different stages of honey bees, the survival of adult honey bees, and level of honey bee viruses in 4 instar larvae and prepupae. The injuries inflicted on different developing honey bee stages were visualised by staining with trypan blue. Among pre-capped stages, 4 instar larvae sustained the highest number of wounds (4.6 ± 0.5/larva) while 2-3 larval instars had at least two wounds. Consequently, wounds were evident on uninfested capped brood (5-6 instar larvae = 3.91 ± 0.64 wounds; prepupae = 5.25 ± 0.73 wounds). Tropilaelaps mite infestations resulted in 3.4- and 6-fold increases in the number of wounds in 5-6 instar larvae and prepupae as compared to uninfested capped brood, respectively. When wound-inflicted prepupae metamorphosed to white-eyed pupae, all wound scars disappeared with the exuviae. This healing of wounds contributed to the reduction of the number of wounds (≤10) observed on the different pupal stages. Transmission of mite-borne virus such as Deformed Wing Virus (DWV) was also enhanced by mites feeding on early larval stages. DWV and Black Queen Cell Virus (BQCV) were detected in all 4 instar larvae and prepupae analysed. However, viral levels were more pronounced in scarred 4 instar larvae and infested prepupae. The remarkably high numbers of wounds and viral load on scarred or infested developing honey bees may have caused significant weight loss and extensive injuries observed on the abdomen, wings, legs, proboscis and antennae of adult honey bees. Together, the survival of infested honey bees was significantly compromised. This study demonstrates the ability of tropilaelaps mites to inflict profound damage on A. mellifera hosts. Effective management approaches need to be developed to mitigate tropilaelaps mite problems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6737106PMC
http://dx.doi.org/10.1038/s41598-019-49662-4DOI Listing

Publication Analysis

Top Keywords

honey bees
24
instar larvae
20
tropilaelaps mites
12
capped brood
12
larvae prepupae
12
number wounds
12
wounds
9
tropilaelaps mercedesae
8
pre- post-capped
8
apis mellifera
8

Similar Publications

Evaluating the Effects of Flavonoids on Insects: Implications for Managing Pests Without Harming Beneficials.

Insects

December 2024

Biological Control of Pests Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, MS 38776, USA.

Flavonoids have multiple functions, including host-plant defense against attacks from herbivorous insects. This manuscript reviewed and analyzed the scientific literature to test the hypothesis that flavonoids can be utilized to manage pests without causing significant harm to beneficials. The methodology involved using recognized literature databases, e.

View Article and Find Full Text PDF

The Phytochemical Properties of Low-Grade Longan Syrup and Its Potential Use as a Dietary Supplement for Honey Bees.

Insects

November 2024

Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.

Climate change significantly affects honey bee populations and their access to natural food sources, demanding alternative economic feed sources. Longan stands out as the most important fruit crop in Southeast Asia, but with a surplus of low-grade fruit that is not suitable for the market. This study investigates the potential of longan syrup as an alternative carbohydrate source for honey bees by measuring sugar composition, phytochemical profiles, feed, and survival, as well as the resulting gut microbial changes.

View Article and Find Full Text PDF

Multiresidue Methods Analysis to Detect Contamination of Selected Metals in Honey and Pesticides in Honey and Pollen.

Foods

December 2024

Food Toxicology Unit, Department of Life and Environmental Science, University Campus of Monserrato, University of Cagliari, SS 554, 09042 Cagliari, Italy.

Honey, a natural food with a rich history, is produced by honeybees and other species of bees from nectar, other plant fluids, and honeydew of sap-sucking insects. During foraging, these bees may be exposed to plant protection products (PPPs), metals, and metalloids, potentially leading to residues in honey and hive products that could have a negative impact on human safety. Recognizing the lack of an appropriate methodology for pesticide contamination of honey and other hive products, this research aims to support the need for studies on residues in pollen and bee products for human consumption to establish safe maximum residue levels (MRLs) for consumers.

View Article and Find Full Text PDF

The Physicochemical Parameters, Phenolic Content, and Antioxidant Activity of Honey from Stingless Bees and : A Systematic Review and Meta-Analysis.

Antioxidants (Basel)

December 2024

Departamento de Medicina y Zootecnia de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.

The most common bee species used for honey production is (), followed by stingless bees. This study included scientific articles using the PRISMA approach. A random effect model was implemented and the effect size (ES) was calculated and reported as the standardized mean difference (SMD) and raw mean difference (RMD).

View Article and Find Full Text PDF

Molecular and functional characterization of Accl(2)efl: A biomarker for heavy metal stress in Apis cerana cerana.

Ecotoxicol Environ Saf

January 2025

Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, Shandong Province, China. Electronic address:

The expanded lethal (2) essential for life [l(2)efl] gene family is responsive to proteostatic stresses. Their protein products are core components of the stress response mechanism and are emerging as promising biomarkers for cellular stress in Apis mellifera. However, l(2)efl (LOC410857) uniquely remains unresponsive to heat stress within this gene family, and research examining its role in adaptation to other types of stress across diverse bee species is scarce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!