Naphthalenediimide-based n-type polymeric semiconductors are extensively used for constructing high-performance all-polymer solar cells (all-PSCs). For such all-polymer systems, charge recombination can be reduced by using thinner active layers, yet suffering insufficient near-infrared light harvesting from the polymeric acceptor. Conversely, increasing the layer thickness overcomes the light harvesting issue, but at the cost of severe charge recombination effects. Here we demonstrate that to manage light propagation within all-PSCs, a thick bulk-heterojunction film of approximately 350 nm is needed to effectively enhance photo-harvesting in the near-infrared region. To overcome the severe charge recombination in such a thick film, a non-halogenic additive is used to induce a well-ordered micro-structure that inherently suppresses recombination loss. The combined strategies of light management and delicate morphology optimization lead to a promising efficiency over 10% for thick-film all-PSCs with active area of 1 cm, showing great promise for future large-scale production and application of all-PSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6736853 | PMC |
http://dx.doi.org/10.1038/s41467-019-12132-6 | DOI Listing |
RSC Adv
January 2025
Department of Electrical Engineering, Sarhad University of Information Technology Peshawar 25000 Pakistan.
The growing demand for efficient, stable, and environmentally friendly photovoltaic technologies has motivated the exploration of nontoxic perovskite materials such as KGeCl. However, the performance of KGeCl-based perovskite solar cells (PSCs) depends heavily on the compatibility of charge transport layers (CTLs) and optimization of device parameters. In this study, six PSC configurations were simulated using SCAPS-1D software, incorporating CTLs such as Alq, CSTO, VO, PB, and SbS.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States.
As a vital process for solar fuel synthesis, water oxidation remains a challenging reaction to perform using durable and cost-effective systems. Despite decades of intense research, our understanding of the detailed processes involved is still limited, particularly under photochemical conditions. Recent research has shown that the overall kinetics of water oxidation by a molecular dyad depends on the coordination between photocharge generation and the subsequent chemical steps.
View Article and Find Full Text PDFACS Omega
January 2025
Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
Carbon dots (CDs) derived from natural products have attracted considerable interest as eco-friendly materials with a wide range of applications, such as bioimaging, sensors, catalysis, and solar energy harvesting. Among these applications, electroluminescence (EL) is particularly desirable for light-emitting devices in display and lighting technologies. Typically, EL devices incorporating CDs feature a layered structure, where CDs function as the central emissive layer, flanked by charge transport layers and electrodes.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
The power conversion efficiency (PCE) of an organic solar cell (OSC) mainly depends on the chemical structures and intrinsic properties of its active layer materials. The development of new nonfullerene acceptors (NFAs) has significantly boosted the PCEs of OSCs over the last decade. Herein, two carbon-oxygen-bridged fused nonacyclic donor units were developed to synthesize two NFAs, namely TTPIC-Ar and iTTPIC-Ar, respectively.
View Article and Find Full Text PDFAnal Methods
January 2025
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P.R. China.
Platelet factor 4 (PF4), a specific protein primarily found in megakaryocytes and platelet α-granules, plays an essential role in the coagulation process. It carries a high positive charge and thus has a unique ability to readily form complexes with negatively charged heparin. This interaction between PF4 and heparin plays a crucial role in platelet aggregation and thrombosis, resulting in heparin-induced thrombocytopenia (HIT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!