Most known examples of horizontal gene transfer (HGT) between eukaryotes are ancient. These events are identified primarily using phylogenetic methods on coding regions alone. Only rarely are there examples of HGT where noncoding DNA is also reported. The gene encoding the wheat virulence protein ToxA and the surrounding 14 kb is one of these rare examples. has been horizontally transferred between three fungal wheat pathogens (, , and ) as part of a conserved ∼14 kb element which contains coding and noncoding regions. Here we used long-read sequencing to define the extent of HGT between these three fungal species. Construction of near-chromosomal-level assemblies enabled identification of terminal inverted repeats on either end of the 14 kb region, typical of a type II DNA transposon. This is the first description of with complete transposon features, which we call ToxhAT. In all three species, ToxhAT resides in a large (140-to-250 kb) transposon-rich genomic island which is absent in isolates that do not carry the gene (annotated here as ). We demonstrate that the horizontal transfer of ToxhAT between and occurred as part of a large (∼80 kb) HGT which is now undergoing extensive decay. In , in contrast, ToxhAT and its resident genomic island are mobile within the genome. Together, these data provide insight into the noncoding regions that facilitate HGT between eukaryotes and into the genomic processes which mask the extent of HGT between these species. This work dissects the tripartite horizontal transfer , a gene that has a direct negative impact on global wheat yields. Defining the extent of horizontally transferred DNA is important because it can provide clues to the mechanisms that facilitate HGT. Our analysis of and its surrounding 14 kb suggests that this gene was horizontally transferred in two independent events, with one event likely facilitated by a type II DNA transposon. These horizontal transfer events are now in various processes of decay in each species due to the repeated insertion of new transposons and subsequent rounds of targeted mutation by a fungal genome defense mechanism known as repeat induced point mutation. This work highlights the role that HGT plays in the evolution of host adaptation in eukaryotic pathogens. It also increases the growing body of evidence indicating that transposons facilitate adaptive HGT events between fungi present in similar environments and hosts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6737239PMC
http://dx.doi.org/10.1128/mBio.01515-19DOI Listing

Publication Analysis

Top Keywords

horizontal transfer
16
three fungal
12
horizontally transferred
12
hgt
9
virulence protein
8
protein toxa
8
fungal wheat
8
wheat pathogens
8
hgt eukaryotes
8
surrounding 14 kb
8

Similar Publications

Background: The whitefly Bemisia tabaci is a notorious agricultural pest known for its ability to cause significant crop damage through direct feeding and virus transmission. Its remarkable adaptability and reproductive capacity are linked to its ability to acquire and integrate horizontally transferred genes (HTGs) into its genome. These HTGs increase the physiological and metabolic capacities of this pest, including cholesterol synthesis, which is critical for its survival and reproductive success.

View Article and Find Full Text PDF

The black garden ant () is a widely distributed species across Europe, North America, and North Africa, playing a pivotal role in ecological processes within its diverse habitats. However, the microbiome associated with remains poorly investigated. In the present study, we isolated a novel species, , from the soil of the anthill.

View Article and Find Full Text PDF

Paramutation, a specific epigenetic phenomenon first identified in by Alexander Brink in the 1950s, has since been observed in different plant and animal species. What sets paramutation apart from other gene silencing processes is its ability for one silenced allele (referred to as paramutagenic) to silence another allele (paramutable) in trans. The resultant silenced allele (paramutated) remains stable across generations, even after separating from the paramutagenic allele, and acquires paramutagenic properties itself.

View Article and Find Full Text PDF

In silico characterization of defense system hotspots in Acinetobacter spp.

Commun Biol

January 2025

Bioinformatics Laboratory, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, China.

The bacteria-phage arm race drives the evolution of diverse bacterial defenses. This study identifies and characterizes the defense hotspots in Acinetobacter baumannii using a reference-free approach. Among 4383 high-quality genomes, we found a total of 17,430 phage defense systems and with 54.

View Article and Find Full Text PDF

Co-occurrence of microplastics, PFASs, antibiotics, and antibiotic resistance genes in groundwater and their composite impacts on indigenous microbial communities: A field study.

Sci Total Environ

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

There is a major gap in the occurrence of mixed emerging contaminants, which hinders our efforts in exploring their behaviors and transport in environmental media, as well as their toxicity to human and ecosystem. This study assessed the occurrence and their correlations of mixed contamination by microplastics (MPs), per- and polyfluoroalkyl substances (PFASs), antibiotics, and antibiotic resistance genes (ARGs) in groundwater collected from a pharmaceutical and chemical industrial park. MPs, PFASs, antibiotics and ARGs were detected at all monitoring wells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!