A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Online breath analysis using metal oxide semiconductor sensors (electronic nose) for diagnosis of lung cancer. | LitMetric

AI Article Synopsis

  • The study explores using an electronic nose (E-nose) to analyze exhaled breath for diagnosing lung cancer due to its simplicity and cost-effectiveness.
  • A multisensory system with six gas sensors was tested on 118 participants, separating those with confirmed lung cancer from healthy controls, utilizing statistical methods like logistic regression for data analysis.
  • The E-nose method showed high effectiveness with 95% sensitivity, 100% specificity, and 97.2% accuracy, indicating it could be a viable tool for lung cancer screening based on breath analysis.

Article Abstract

The analysis of exhaled breath is drawing a high degree of interest in the diagnostics of various diseases, including lung cancer. Electronic nose (E-nose) technology is one of the perspective approaches in the field due to its relative simplicity and cost efficiency. The use of an E-nose together with pattern recognition algorithms allow 'breath-prints' to be discriminated. The aim of this study was to develop an efficient online E-nose-based lung cancer diagnostic method via exhaled breath analysis with the use of some statistical classification methods. A developed multisensory system consisting of six metal oxide chemoresistance gas sensors was employed in three temperature regimes. This study involved 118 individuals: 65 in the lung cancer group (cytologically verified) and 53 in the healthy control group. The exhaled breath samples of the volunteers were analysed using the developed E-nose system. The dataset obtained, consisting of the sensor responses, was pre-processed and split into training (70%) and test (30%) subsets. The training data was used to fit the classification models; the test data was used for the estimation of prediction possibility. Logistic regression was found to be an adequate data-processing approach. The performance of the developed method was promising for the screening purposes (sensitivity-95.0%, specificity-100.0%, accuracy-97.2%). This shows the applicability of the gas-sensitive sensor array for the exhaled breath diagnostics. Metal oxide sensors are highly sensitive, low-cost and stable, and their poor sensitivity can be enhanced by integrating them with machine learning algorithms, as can be seen in this study. All experiments were carried out with the permission of the N.N. Petrov Research Institute of Oncology ethics committee no. 15/83 dated March 15, 2017.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1752-7163/ab433dDOI Listing

Publication Analysis

Top Keywords

lung cancer
16
exhaled breath
16
metal oxide
12
breath analysis
8
electronic nose
8
online breath
4
analysis metal
4
oxide semiconductor
4
semiconductor sensors
4
sensors electronic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!