In our previous study, miR-410-3p had been confirmed to regulate inflammatory cytokine release in rheumatoid arthritis fibroblast-like synoviocytes (RA FLSs). However, other biological functions of miR-410-3p in RA FLSs still remain unexplored. In the present study, we focused on the effect of miR-410-3p on proliferation, apoptosis, and cell cycle of RA FLSs, and explored the potential underlying mechanism. miR-410-3p mRNA levels in the synovium and FLSs of patients with RA and of healthy controls were quantitated by RT-qPCR. The levels of miR-410-3p were reduced in both synovium and FLSs from patients with RA. Next, we focused on the roles of miR-410-3p in cell viability, apoptosis, and cell cycle, by transfecting miR-410-3p mimics and inhibitor into RA FLSs, and conducting CCK-8 assay, EdU staining and flow cytometry. Results showed that miR-410-3p up-regulation suppressed proliferation, promoted apoptosis and G1-S phase transition while miR-410-3p down-regulation had opposite effects. YY1 was verified as a direct target gene of miR-410-3p through the luciferase reporter system; YY1 up-regulation was able to rescue the effects of miR-410-3p in RA FLSs. Taken together, our current findings might provide a potential therapeutic target for RA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2019.109426 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!