The neural transmission and plasticity can be differentially modulated by various elements of the immune system. Interferon-γ (IFN-γ) is a "pro-inflammatory" cytokine mainly produced by T lymphocytes, activates its corresponding receptor and plays important roles under both homeostatic and inflammatory conditions. However, the impact of IFN-γ on the γ-aminobutyric acid (GABA)-mediated currents in the hippocampus, a major brain region involved in the cognitive function, has not been investigated. Here we detected abundant expression of both IFN-γ receptor subunit gene transcripts (Ifngr1 and Ifngr2) in the rat hippocampus by quantitative PCR. In addition, we pre-incubated rat hippocampal slices with IFN-γ (100 ng/ml) and recorded GABA-activated spontaneous and miniature postsynaptic inhibitory currents (sIPSCs and mIPSCs) and tonic currents in hippocampal CA1 pyramidal neurons by the whole-cell patch-clamp method. The pre-incubation with IFN-γ increased the frequency but not the mean amplitude, rise time or decay time of both sIPSCs and mIPSCs in hippocampal CA1 pyramidal neurons, suggesting a presynaptic effect of IFN-γ. Moreover, the GABA-activated tonic currents were enhanced by IFN-γ. In conclusion, the potentiation of GABAergic currents in hippocampal neurons by IFN-γ may contribute to the disturbed neuronal excitability and cognitive dysfunction during neuroinflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneuroim.2019.577050 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!