A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synergy of biofuel production with waste remediation along with value-added co-products recovery through microalgae cultivation: A review of membrane-integrated green approach. | LitMetric

Development of advanced biofuels such as bioethanol and biodiesel from renewable resources is critical for the earth's sustainable management and to slow down the global climate change by partial replacement of gasoline and diesel in the transport sector. Being a diverse group of aquatic micro-organisms, algae are the most prominent resources on the planet, distributed in an aquatic system, a potential source of bioenergy, biomass and secondary metabolites. Microalgae-based biofuel production is widely accepted as non-food fuel sources and better choice for achieving goals of incorporation of a clean fuel source into the transportation sector. The present review article provides a comprehensive literature survey as well as a novel approach on the application of microalgae for their simultaneous cultivation and bioremediation of high nutrient containing wastewater. In addition to that, merits and demerits of different existing conventional techniques for microalgae culture reactors, harvesting of algal biomass, oil recovery, use of different catalysts for transesterification reactions and other by-products recovery have been discussed and compared with the membrane-based system to find out the best optimal conditions for higher biomass as well as lipid yield. This article also deals with the use of a tailor-made membrane in an appropriate module that can be used in upstream and downstream processes during algal-based biofuels production. Such membrane-integrated system has the potential of low-cost and eco-friendly separation, purification and concentration enrichment of biodiesel as well as other valuable algal by-products which can bring the high degree of process intensification for scale-up at the industrial stage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.134169DOI Listing

Publication Analysis

Top Keywords

biofuel production
8
system potential
8
synergy biofuel
4
production waste
4
waste remediation
4
remediation value-added
4
value-added co-products
4
co-products recovery
4
recovery microalgae
4
microalgae cultivation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!