Hexavalent chromium [Cr(VI)] is one of the most common environmental carcinogen causing lung cancer in humans; however, the mechanism of Cr(VI) carcinogenesis remains elusive. Cancer stem cells (CSCs) are considered as cancer initiating and maintaining cells. Ours and other recent studies showed that chronic Cr(VI) exposure induces CSC-like property representing an important mechanism of Cr(VI) carcinogenesis. However, how Cr(VI) exposure induces CSC-like property remains largely unknown. In this study, we found that stably knocking down the expression of c-Myc, a proto-oncogene and one of key stemness factors playing critical roles in cancer initiation and progression, in Cr(VI)-transformed human bronchial epithelial cells [BEAS-2B-Cr(VI)] significantly decreased their CSC-like property and tumorigenicity in mice. Moreover, stably knocking down c-Myc expression in parental nontransformed BEAS-2B cells significantly impaired the capability of chronic Cr(VI) exposure to induce CSC-like property and cell transformation. It was also found that stably overexpressing c-Myc alone in parental nontransformed BEAS-2B cells is capable of causing CSC-like property and cell transformation. Mechanistic studies showed that chronic Cr(VI) exposure increases c-Myc expression by down-regulating the level of microRNA-494 (miR-494). It was further determined that overexpressing miR-494 significantly reduces Cr(VI)-induced CSC-like property, cell transformation, and tumorigenesis mainly through down-regulating c-Myc expression. Together, these findings indicate that chronic low dose Cr(VI) exposure induces CSC-like property and tumorigenesis by increasing c-Myc expression through down-regulating the level of miR-494, revealing an important role of the proto-oncogene c-Myc in Cr(VI) carcinogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6876261PMC
http://dx.doi.org/10.1093/toxsci/kfz196DOI Listing

Publication Analysis

Top Keywords

csc-like property
28
c-myc expression
20
crvi exposure
20
exposure induces
16
crvi carcinogenesis
12
chronic crvi
12
induces csc-like
12
property cell
12
cell transformation
12
hexavalent chromium
8

Similar Publications

Tetramethylpyrazine attenuates the cancer stem cell like-properties and doxorubicin resistance by targeting HMGCR in breast cancer.

Phytomedicine

December 2024

Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, PR China. Electronic address:

Background: Tetramethylpyrazine (TMP), a key bioactive constituent derived from Ligusticum wallichii Franchat, has demonstrated efficacy in mitigating multidrug resistance (MDR) in human breast cancer (BC) cells. However, the precise mechanisms underlying its action remain poorly understood.

Purpose: Cancer stem cells (CSCs) are widely recognized as the primary contributors to MDR.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights the role of squalene epoxidase (SQLE) in the progression and recurrence of high-grade serous ovarian carcinoma (HGSOC), showing its significant upregulation in cancer samples and association with poor patient outcomes.
  • SQLE promotes cancer cell growth by driving proliferation and inhibiting apoptosis, while also enhancing stem-like properties in cancer cells, making it a key factor in maintaining HGSOC stemness.
  • Additionally, the research indicates that SQLE mRNA stability is influenced by specific modifications and binding proteins, suggesting that targeting SQLE could be a promising strategy for improving HGSOC prognosis and treatment.
View Article and Find Full Text PDF

Bisphenol S exposure promotes stemness of triple-negative breast cancer cells via regulating Gli1-mediated Sonic hedgehog pathway.

Environ Res

January 2025

Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China. Electronic address:

Bisphenol S (BPS), one of the most common alternatives for bisphenol A (BPA), has been implied to increase the risk of breast cancer. Triple-negative breast cancer (TNBC) is a highly aggressive type of breast cancer with a poor prognosis. However, the association between BPS and TNBC remains unclear.

View Article and Find Full Text PDF

Background: Glioblastoma (GB) is a highly malignant type of brain cancer with a poor prognosis. Therapeutic strategies for GB are still limited. Rosmarinic acid (RA), a polyphenolic compound, is a promising experimental anticancer agent, but its specific protein targets for GB remain unclear.

View Article and Find Full Text PDF

Fatty acid synthase inhibitor cerulenin hinders liver cancer stem cell properties through FASN/APP axis as novel therapeutic strategies.

J Lipid Res

November 2024

Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. Electronic address:

Hepatocellular carcinoma (HCC) poses significant treatment challenges due to high postoperative recurrence rates and the limited effectiveness of targeted medications. Researchers have identified the unique metabolic profiles of cancer stem cells (CSCs) as the primary drivers of cancer recurrence, metastasis, and drug resistance. Therefore, to address the therapeutic conundrum, this study focused on rewinding metabolic reprogramming of CSCs as a novel therapeutic strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!