How species diversification occurs remains an unanswered question in predatory marine invertebrates, such as sea snails of the family Terebridae. However, the anatomical disparity found throughput the Terebridae provides a unique perspective for investigating diversification patterns in venomous predators. In this study, a new dated molecular phylogeny of the Terebridae is used as a framework for investigating diversification of the family through time, and for testing the putative role of intrinsic and extrinsic traits, such as shell size, larval ecology, bathymetric distribution, and anatomical features of the venom apparatus, as drivers of terebrid species diversification. Macroevolutionary analysis revealed that when diversification rates do not vary across Terebridae clades, the whole family has been increasing its global diversification rate since 25 Ma. We recovered evidence for a concurrent increase in diversification of depth ranges, while shell size appeared to have undergone a fast divergence early in terebrid evolutionary history. Our data also confirm that planktotrophy is the ancestral larval ecology in terebrids, and evolutionary modeling highlighted that shell size is linked to larval ecology of the Terebridae, with species with long-living pelagic larvae tending to be larger and have a broader size range than lecithotrophic species. Although we recovered patterns of size and depth trait diversification through time and across clades, the presence or absence of a venom gland (VG) did not appear to have impacted Terebridae diversification. Terebrids have lost their venom apparatus several times and we confirm that the loss of a VG happened in phylogenetically clustered terminal taxa and that reversal is extremely unlikely. Our findings suggest that environmental factors, and not venom, have had more influence on terebrid evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7164365 | PMC |
http://dx.doi.org/10.1093/sysbio/syz059 | DOI Listing |
Sci Rep
November 2024
Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Division of General Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Währinger Gürtel 18-20, Wien, Vienna, 1090, Austria.
Pest Manag Sci
November 2024
Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China.
Background: Venom serves as a pivotal parasitic factor employed by parasitoid wasps to manipulate their hosts, creating a favorable environment for the successful growth of their progeny, and ultimately kill the host. The bioactive molecules within parasitoid venoms exhibit insecticidal activities with promising prospects for agricultural applications. However, knowledge regarding the venom components of parasitoids and the discovery of functional biomolecules from them remains limited.
View Article and Find Full Text PDFToxicon
December 2024
Department of Animal Science, Faculty of Agriculture, Van Yuzuncu Yil University, Van, Turkey.
Bee venom (BV) is a versatile product with extensive applications, boasting antibacterial and anticancer properties. Within this study, we focused on isolating melittin (Mel) from Apis mellifera L. venom and exploring the influence of both BV and Mel on specific enzymes, namely carbonic anhydrase (CA) I, CA II, CA IX, glutathione reductase (GR), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and neuraminidase (NA).
View Article and Find Full Text PDFPhysiol Behav
December 2024
Centre d'Etudes Biologiques de Chizé-La Rochelle, CEBC-CNRS UMR7372, 79360, Villiers en Bois, France; School of Life Sciences, Arizona State University, Tempe, AZ, USA.
To minimize predation risk and the cost of confronting predators, prey have developed a range of defensive strategies and warning signals. Although advantageous, defensive warnings may also induce physiological and energy costs to the emitter. Ventilatory sounds (hissing) are the most distributed warning sound in vertebrates.
View Article and Find Full Text PDFSci Rep
August 2024
Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!